Skip to main content

Advertisement

Log in

Midline “brain in brain”: an unusual variant of holoprosencephaly with anterior prosomeric cortical dysplasia

  • Case Report
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

We report three cases of brain malformation presenting with a midline mass of dysplastic cortex that we have termed “brain in brain” malformation.

Results

The three cases have holoprosencephalic features, including bilateral hemispheric continuity across the midline, single ventricle, midline facial defect and missing olfactory bulbs. All three cases have a midline conglomerate mass of deeply infolded, cortex-lined fissures with major arterial branches, heterotopia and large amount of white matter. The dysplastic mass of cortex and white matter extended into the third ventricle. The cortex and white matter of the dysplastic lesion was continuous with the cortex and white matter, respectively, of the cerebral hemispheres.

Conclusion

The midline “brain in brain” malformations have some similarities to subcortical heterotopia and extracerebral glioneuronal heterotopia. However, the continuity with the cerebral hemispheres and extension into the ventricle were not reported in subcortical or glioneuronal heterotopia. The common involvement of the midline cortex and extension into the third ventricle implied an anterior segmental prosencephalic abnormality (prosomeres 5/6). However, its pathogenesis remains to be explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rubenstein JLR, Martinez S, Shimamura K, Puelles L (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266:578–580

    Article  PubMed  CAS  Google Scholar 

  2. Rubenstein JLR, Shimamura K (1998) Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21:445–477

    Article  CAS  Google Scholar 

  3. Li H, Tierney C, Wen L, Wu JY, Rao Y (1997) A single morphogenetic field gives rise to two retinal primordia under the influence of the prechordal plate. Development 124:603–615

    PubMed  CAS  Google Scholar 

  4. Dale JK, Vesque C, Lints TJ, Sampath TK, Furley A, Dodd J et al (1997) Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 90:257–269

    Article  PubMed  CAS  Google Scholar 

  5. Muller F, O’Rahilly R (1989) Mediobasal prosencephalic defects, including holoprosencephaly and cyclopia, in relation to the development of the human forebrain. Am J Anat 185:391–414

    Article  PubMed  CAS  Google Scholar 

  6. Wilson SW, Houart C (2004) Early steps in the development of the forebrain. Development 6:167–181

    CAS  Google Scholar 

  7. Ericson J, Muhr J, Placzek M, Lints T, Jessell TM, Edlund T (1995) Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81:747–756

    Article  PubMed  CAS  Google Scholar 

  8. MacDonald R, Barth K, Xu Q, Holder N, Mikkola I, Wilson S (1995) Midline signaling is required for Pax gene regulation and patterning of the eyes. Development 121:3267–3278

    PubMed  CAS  Google Scholar 

  9. Chiang C, Litingtung Y, Lee E, Young K, Corden J, Westphal H et al (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413

    Article  PubMed  CAS  Google Scholar 

  10. Britto J, Tannahill D, Keynes R (2002) A critical role for sonic hedgehog signaling in the early expansion of the developing brain. Nat Neurosci 5:103–110

    Article  PubMed  CAS  Google Scholar 

  11. Ahlgren SC, Bonner-Fraser M (1999) Inhibition of Sonic hedgehog signaling in vivo results in craniofacial neural crest death. Curr Biol 9:1304–1314

    Article  PubMed  CAS  Google Scholar 

  12. Etchevers HC, Couly G, Vincent C, Le Douarin NM (1999) Anterior cephalic neural crest is required for forebrain viability. Development 126:3533–3543

    PubMed  CAS  Google Scholar 

  13. Furuta Y, Piston DW, Hogan BL (1997) Bone morphogenetic proteins (BMP) as regulators of dorsal forebrain development. Development 124:2203–2212

    PubMed  CAS  Google Scholar 

  14. Shimamura K, Rubenstein JLR (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124:2709–2718

    PubMed  CAS  Google Scholar 

  15. Golden J, Bracilovic A, McFadden K, Beesley J, Rubenstein J, Grinspan J (1999) Ectopic bone morphogenetic proteins 5 and 4 in the chicken forebrain leads to cyclopia and holoprosencephaly. Proc Natl Acad Sci USA 96:2439–2444

    Article  PubMed  CAS  Google Scholar 

  16. DeMyer W, Zeman W (1963) Alobar holoprosencephaly (arhinencephaly) with median cleft lip and palate: clinical, nosologic and electroencephalographic considerations. Confin Neurol 23:1–36

    PubMed  CAS  Google Scholar 

  17. DeMyer W, Zeman W, Palmer CG (1964) The face predicts the brain: diagnostic significance of median facial anomalies for holoprosencephaly (arhinencephaly). Pediatrics 34:256–23

    Google Scholar 

  18. Roessler E, Muenke M (1999) The molecular genetics of holoprosencephaly: a model of development for the next century. Childs Nerv Syst 15:646–651

    Article  PubMed  CAS  Google Scholar 

  19. Cohen MM (2001) Problems in the definition of holoprosencephaly. Am J Med Genet 103:183–187

    Article  PubMed  Google Scholar 

  20. Cordero D, Marcucio R, Hu D, Gaffield W, Tapadia M, Helms JA (2004) Temporal perturbations on sonic hedgehog signaling elicit the spectrum of holoprosencephaly phenotypes. J Clin Invest 114:485–494

    Article  PubMed  CAS  Google Scholar 

  21. Barkovich AJ, Simon EM, Clegg NJ, Kinsman SL, Hahn JS (2002) Analysis of the cerebral cortex in holoprosencephaly with attention to the sylvian fissures. AJNR Am J Neuroradiol 23:143–150

    PubMed  Google Scholar 

  22. Barkovich AJ (2000) Morphologic characteristics of subcortical heterotopia: MR imaging study. AJNR Am J Neuroradiol 21:290–295

    PubMed  CAS  Google Scholar 

  23. Marubayashi T, Matsukado Y (1978) Intracranial extracerebral brain heterotopia. Case report. J Neurosurg 48:470–474

    Article  PubMed  CAS  Google Scholar 

  24. Nishio S, Mizuno J, Barrow DL, Takei Y, O’Brien MS (1988) Intracranial extracerebral glioneural heterotopia. Childs Nerv Syst 4:244–248

    Article  PubMed  CAS  Google Scholar 

  25. Harris CP, Townsend JJ, Klatt EC (1994) Accessory brains (extracerebral heterotopias): unusual prenatal intracranial mass lesions. J Child Neurol 9:386–389

    Article  PubMed  CAS  Google Scholar 

  26. Gyure KA, Morrison AL, Jones RV (1999) Intracranial extracerebral neuroglial heterotopia: a case report and review of the literature. Ann Diagn Pathol 3:182–186

    Article  PubMed  CAS  Google Scholar 

  27. Muzumdar D, Michaud J, Ventureyra ECG (2006) Anterior cranial base glioneuronal heterotopia. Childs Nerv Syst 22:227–233

    Article  PubMed  Google Scholar 

  28. Hirano S, Houdou S, Hasegawa M, Kamei A, Takashima S (1992) Clinicopathologic studies on leptomeningeal glioneuronal heterotopia congenital anomalies. Pediatr Neurol 8(6):441–444

    Article  PubMed  CAS  Google Scholar 

  29. Widjaja E, Griffiths PD, Wilkinson ID (2003) Proton MR spectroscopy of polymicrogyria and heterotopia. AJNR Am J Neuroradiol 24(10):2077–2081

    PubMed  Google Scholar 

  30. Freeman JL, Coleman LT, Wellard RM, Kean MJ, Rosenfeld JV, Jackson GD, Berkovic SF, Harvey AS (2004) MR imaging and spectroscopic study of epileptogenic hypothalamic hamartomas: analysis of 72 cases. AJNR Am J Neuroradiol 25:450–462

    PubMed  Google Scholar 

  31. Richieri-Costa A, Frederigue Junior U, Guinon-Almeida ML (1993) Holoprosencephaly, hamartomatous growth of the cerebrum, dysplastic gangliocytoma of the cerebellum, unique brain anomalies, and renal agenesis in a Brazilian infant born to a diabetic mother: a clinical and pathologic study. Birth Defects Orig Artic Ser 29(1):389–394

    PubMed  CAS  Google Scholar 

  32. Eksioglu YZ, Scheffer IE, Cardenas P, Knoll J, DiMario F, Ramsby G et al (1996) Periventricular heterotopia: an X-linked dominant epilepsy locus causing aberrant cortical development. Neuron 16:77–87

    Article  PubMed  CAS  Google Scholar 

  33. Parrini E, Ramazzotti A, Dobyns WB, Mei D, Moro F, Veggiotti P, Marini C, Brilstra EH, Dalla Bernardina B, Goodwin L, Bodell A, Jones MC, Nangeroni M, Palmer S, Said E, Sander JW, Striano P, Takahashi Y, Van Maldergem L, Leonardi G, Wright M, Walsh CA, Guerrini R (2006) Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations. Brain 129(Pt 7):1892–1906

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Raybaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Widjaja, E., Massimi, L., Blaser, S. et al. Midline “brain in brain”: an unusual variant of holoprosencephaly with anterior prosomeric cortical dysplasia. Childs Nerv Syst 23, 437–442 (2007). https://doi.org/10.1007/s00381-006-0233-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-006-0233-1

Keywords

Navigation