Skip to main content

Advertisement

Log in

Transport stress induces apoptosis in rat myocardial tissue via activation of the mitogen-activated protein kinase signaling pathways

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The present study aimed to elucidate the mechanism of myocardial damage induced by simulated transport stress. Sprague–Dawley rats were subjected to 35 °C and 60 rpm (0.1×g rcf) on a constant temperature shaker. The blood samples were prepared for detection of epinephrine (E), norepinephrine (NE), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and serum cardiac troponin T (cTNT); myocardium samples were prepared for morphological examination and signaling protein quantitative. The result showed that plasma norepinephrine (NE) and epinephrine (E) concentrations increased in all stressed groups (P < 0.01). Levels of serum cardiac troponin T (cTNT) were elevated in both the S2d (P < 0.05) and S3d groups (P < 0.01). The concentration of plasma BNP was increased significantly in S3d group (P < 0.05); the difference in ANP was not remarkable. Morphological observation demonstrated obvious microstructure and ultrastructure damage after simulated transport stress. There was also a significant increase in the number of TUNEL-positive cardiomyocytes in stressed hearts. Western blot analysis found that the mitogen-activated protein kinase (MAPK) pathways were activated by strengthening phosphorylation of ASK-1, JNK, P38 and ERK in rat myocardial tissue after simulated transport stress (P < 0.05, P < 0.01). In addition, the ratio of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins was increased in stressed rats (P < 0.01), and the amount of cleaved-caspase3 increased in all stressed rats (P < 0.01). The expression of cleaved-caspase9 protein was also elevated in S2d and S3d groups (P < 0.01). Consequently simulated transport stress induced obvious myocardial damage, which may be attributed to the activation of caspase 9-mediated mitochondrial apoptotic pathway and MAPK pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. González LA, Schwartzkopf-Genswein KS, Bryan M, Silasi R, Brown F (2012) Relationships between transport conditions and welfare outcomes during commercial long haul transport of cattle in North America. J Anim Sci 90:3640–3651

    Article  PubMed  Google Scholar 

  2. Obernier JA, Baldwin RL (2006) Establishing an appropriate period of acclimatization following transportation of laboratory animals. ILAR J 47:364–369

    Article  CAS  PubMed  Google Scholar 

  3. de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475

    Article  PubMed  Google Scholar 

  4. McEwen BS, Seeman T (1999) Protective and damaging effects of mediators of stress. Ann N Y Acad Sci 896:30–47

    Article  CAS  PubMed  Google Scholar 

  5. Wan CR, Yin P, Xu XL, Liu MJ, He SS, Song SX, Liu FH, Xu JQ (2014) Effect of simulated transport stress on the rat small intestine: a morphological and gene expression study. Res Vet Sci 96:355–364

    Article  CAS  PubMed  Google Scholar 

  6. Abraham J, Mudd JO, Kapur NK, Klein K, Champion HC, Wittstein IS (2009) Stress cardiomyopathy after intravenous administration of catecholamines and beta-receptor agonists. J Am Coll Cardiol 53:1320–1325

    Article  CAS  PubMed  Google Scholar 

  7. Baines CP, Molkentin JD (2005) STRESS signaling pathways that modulate cardiac myocyte apoptosis. J Mol Cell Cardiol 38:47–62

    Article  CAS  PubMed  Google Scholar 

  8. Mizote I, Yamaguchi O, Hikoso S, Takeda T, Taneike M, Oka T, Tamai T, Oyabu J, Matsumura Y, Nishida K, Komuro I, Hori M, Otsu K (2010) Activation of MTK1/MEKK4 induces cardiomyocyte death and heart failure. J Mol Cell Cardiol 48:302–309

    Article  CAS  PubMed  Google Scholar 

  9. Cowan KJ, Storey KB (2003) Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 206:1107–1115

    Article  CAS  PubMed  Google Scholar 

  10. Zhu W, Zou Y, Aikawa R, Harada K, Kudoh S, Uozumi H, Hayashi D, Gu Y, Yamazaki T, Nagai R, Yazaki Y, Komuro I (1999) MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation 100:2100–2107

    Article  CAS  PubMed  Google Scholar 

  11. Park J, Ann SH, Chung HC, Lee JS, Kim SJ, Garg S, Shin ES (2014) Remote ischemic preconditioning in hemodialysis: a pilot study. Heart Vessels 29:58–64

    Article  PubMed  Google Scholar 

  12. Feuerstein GZ, Young PR (2000) Apoptosis in cardiac diseases: stress- and mitogen-activated signaling pathways. Cardiovasc Res 45:560–569

    Article  CAS  PubMed  Google Scholar 

  13. Sanchez A, Toledo-Pinto EA, Menezes ML, Pereira OC (2003) Changes in norepinephrine and epinephrine concentrations in adrenal gland of the rats submitted to acute immobilization stress. Pharmacol Res 48:607–613

    Article  CAS  PubMed  Google Scholar 

  14. Schmittinger CA, Wurzinger B, Deutinger M, Wohlmuth C, Knotzer H, Torgersen C, Dünser MW, Hasibeder WR (2010) How to protect the heart in septic shock: a hypothesis on the pathophysiology and treatment of septic heart failure. Med Hypotheses 74:460–465

    Article  CAS  PubMed  Google Scholar 

  15. Costa VM, Carvalho F, Bastos ML, Carvalho RA, Carvalho M, Remião F (2011) Contribution of catecholamine reactive intermediates and oxidative stress to the pathologic features of heart diseases. Curr Med Chem 18:2272–2314

    Article  CAS  PubMed  Google Scholar 

  16. Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, Wu KC, Rade JJ, Bivalacqua TJ, Champion HC (2005) Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352:539–548

    Article  CAS  PubMed  Google Scholar 

  17. Rona G (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol 17:291–306

    Article  CAS  PubMed  Google Scholar 

  18. Yamada K, Iino S, Isobe S, Kondo T, Izawa H, Inden Y, Yoshikane M, Ikeda N, Hirai M, Sawada K, Murohara T (2012) Relation of plasma catecholamine levels with pulse wave velocity in hypertensive patients compared with normotensive subjects. Heart Vessels 27:493–498

    Article  PubMed  Google Scholar 

  19. Macheret F, Heublein D, Costello-Boerrigter LC, Boerrigter G, McKie P, Bellavia D, Mangiafico S, Ikeda Y, Bailey K, Scott CG, Sandberg S, Chen HH, Malatino L, Redfield MM, Rodeheffer R, Burnett J, Cataliotti A (2012) Human hypertension is characterized by a lack of activation of the antihypertensive cardiac hormones ANP and BNP. J Am Coll Cardiol 60:1558–1565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Pfister R, Michels G (2013) Lack of activation of the antihypertensive cardiac hormones ANP and BNP in human hypertension. J Am Coll Cardiol 61:900–901

    Article  CAS  PubMed  Google Scholar 

  21. Therkelsen SK, Groenning BA, Kjaer A, Svendsen JH, Boje Jensen G (2008) ANP and BNP in atrial fibrillation before and after cardioversion—and their relationship to cardiac volume and function. Int J Cardiol 127:396–399

    Article  PubMed  Google Scholar 

  22. Xia L, Weiqiang K (2014) The relationship of plasma BNP, ANP, TNF-α and IL-6 levels to cardiac function in patients with congestive heart failure. J Am Coll Cardiol 64:C189

    Article  Google Scholar 

  23. Nef HM, Mollmann H, Akashi YJ, Hamm CW (2010) Mechanisms of stress (Takotsubo) cardiomyopathy. Nat Rev Cardiol 7:187–193

    Article  PubMed  Google Scholar 

  24. Latini R, Masson S, Anand IS, Missov E, Carlson M, Vago T, Angelici L, Barlera S, Parrinello G, Maggioni AP, Tognoni G, Cohn JN (2007) Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation 116:1242–1249

    Article  CAS  PubMed  Google Scholar 

  25. Kawahara C, Tsutamoto T, Nishiyama K, Yamaji M, Sakai H, Fujii M, Yamamoto T, Horie M (2011) Prognostic role of high-sensitivity cardiac troponin T in patients with nonischemic dilated cardiomyopathy. Circ J 75:656–661

    Article  PubMed  Google Scholar 

  26. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642

    Article  CAS  PubMed  Google Scholar 

  27. Muñoz-Pinedo C (2012) Signaling pathways that regulate life and cell death: evolution of apoptosis in the context of self-defense. Adv Exp Med Biol 738:124–143

    Article  PubMed  Google Scholar 

  28. Uchida Y, Egami H, Uchida Y, Sakurai T, Kanai M, Shirai S, Nakagawa O, Oshima T (2010) Possible participation of endothelial cell apoptosis of coronary microvessels in the genesis of Takotsubo cardiomyopathy. Clin Cardiol 33:371–377

    Article  PubMed  Google Scholar 

  29. Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends Biochem Sci 25:319–324

    Article  CAS  PubMed  Google Scholar 

  30. Fu YC, Chi CS, Yin SC, Hwang B, Chiu YT, Hsu SL (2004) Norepinephrine induces apoptosis in neonatal rat endothelial cells via down-regulation of Bcl-2 and activation of β-adrenergic and caspase-2 pathways. Cardiovasc Res 61:143–151

    Article  CAS  PubMed  Google Scholar 

  31. Hong SH, Jang HH, Lee SR, Lee KH, Woo JS, Kim JB, Kim WS, Min BI, Cho KH, Kim KS, Cheng X, Kim W (2014) Impact of lysophosphatidylcholine on survival and function of UEA-1acLDL endothelial progenitor cells in patients with coronary artery disease. Heart Vessels. doi:10.1007/s00380-014-0473-z

    Google Scholar 

  32. Fu YC, Yin SC, Chi CS, Hwang B, Hsu SL (2006) Norepinephrine induces apoptosis in neonatal rat endothelial cells via a ROS-dependent JNK activation pathway. Apoptosis 11:2053–2063

    Article  CAS  PubMed  Google Scholar 

  33. Takebe K, Nishiyama T, Hayashi S, Hashimoto S, Fujishiro T, Kanzaki N, Kawakita K, Iwasa K, Kuroda R, Kurosaka M (2011) Regulation of p38 MAPK phosphorylation inhibits chondrocyte apoptosis in response to heat stress or mechanical stress. Int J Mol Med 27:329–335

    CAS  PubMed  Google Scholar 

  34. Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Yamaguchi O, Higuchi Y, Hirotani S, Kashiwase K, Nakayama H, Hikoso S, Takeda T, Watanabe T, Asahi M, Taniike M, Matsumura Y, Tsujimoto I, Hongo K, Kusakari Y, Kurihara S, Nishida K, Ichijo H, Hori M, Otsu K (2003) Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proc Natl Acad Sci USA 100:15883–15888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hikoso S, Ikeda Y, Yamaguchi O, Takeda T, Higuchi Y, Hirotani S, Kashiwase K, Yamada M, Asahi M, Matsumura Y, Nishida K, Matsuzaki M, Hori M, Otsu K (2007) Progression of heart failure was suppressed by inhibition of apoptosis signal-regulating kinase 1 via transcoronary gene transfer. J Am Coll Cardiol 50:453–462

    Article  CAS  PubMed  Google Scholar 

  37. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90–94

    Article  CAS  PubMed  Google Scholar 

  38. Bhattacharya U, Halder B, Mukhopadhyay S, Giri AK (2009) Role of oxidation-triggered activation of JNK and p38 MAPK in black tea polyphenols induced apoptotic death of A375 cells. Cancer Sci 100:1971–1978

    Article  CAS  PubMed  Google Scholar 

  39. Dai Y, Yu C, Singh V, Tang L, Wang Z, McInistry R, Dent P, Grant S (2001) Pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase/MAPK cascade interact synergistically with UCN-01 to induce mitochondrial dysfunction and apoptosis in human leukemia cells. Cancer Res 61:5106–5115

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Public Service Sectors Agriculture Research Projects (No. 201003060-9/10). We are thankful for the help from the members of CAU-BUA TCVM teaching and research team.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, C., Chen, Y., Yin, P. et al. Transport stress induces apoptosis in rat myocardial tissue via activation of the mitogen-activated protein kinase signaling pathways. Heart Vessels 31, 212–221 (2016). https://doi.org/10.1007/s00380-014-0607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-014-0607-3

Keywords

Navigation