Skip to main content

Advertisement

Log in

Lower 1,5-anhydroglucitol is associated with denovo coronary artery disease in patients at high cardiovascular risk

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Postprandial hyperglycemia is a risk factor for cardiovascular disease and mortality. Serum 1,5-anhydroglucitol (1,5-AG) level is an useful clinical marker of glucose metabolism which reflects postprandial hyperglycemia more robustly compared to hemoglobin A1c (HbA1c). Relationship between serum 1,5-AG level and cardiovascular disease has been reported; however, comparison between HbA1c and 1,5-AG as markers of cardiovascular disease was not performed. We included 227 consecutive patients who underwent coronary angiography meeting the following inclusion criteria: (1) patients who had no history of coronary artery disease (CAD); (2) patients without acute coronary syndrome; (3) patients without poorly controlled diabetes mellitus; (4) patients without anemia, liver dysfunction, acute, and chronic renal failure and malnutrition; and (5) patients without adhibition of acarbose or Chinese herbal medicine. We measured HbA1c, glycoalbumin, and 1,5-AG. Serum 1,5-AG was significantly lower in patients with CAD (16.6 ± 8.50 vs. 21.1 ± 7.97 μg/ml, P < 0.001). Multivariable logistic regression analysis showed decrease in serum 1,5-AG was independently associated with the presence of denovo CAD (0.93, 95 % CI 0.88–0.98, P = 0.006). Serum 1,5-AG was also independently associated with the presence of denovo CAD in patients without diabetes mellitus (0.94, 95 % CI 0.88–0.99, P = 0.046). In conclusion, lower serum 1,5-AG was associated with the presence of denovo CAD. Serum 1,5-AG may identify high cardiovascular risk patients for denovo CAD in both diabetic and non-diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. The DECODE study group on behalf of the Europe an Diabetes Epidemiology Group (1999) Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European diabetes epidemiology Group. Diabetes epidemiology: collaborative analysis of diagnostic criteria in Europe. Lancet 354(9179):617–621

    Article  Google Scholar 

  2. Donahue RP, Abbott RD, Reed DM, Yano K (1987) Postchallenge glucose concentration and coronary heart disease in men of Japanese ancestry. Honolulu Heart Program. Diabetes 36(6):689–692

    Article  CAS  PubMed  Google Scholar 

  3. Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A (1999) Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care 22(6):920–924

    Article  CAS  PubMed  Google Scholar 

  4. Dungan KM, Buse JB, Largay J, Kelly MM, Button EA, Kato S, Wittlin S (2006) 1,5-anhydroglucitol and postprandial hyperglycemia as measured by continuous glucose monitoring system in moderately controlled patients with diabetes. Diabetes Care 29(6):1214–1219

    Article  CAS  PubMed  Google Scholar 

  5. Kishimoto M, Yamasaki Y, Kubota M, Arai K, Morishima T, Kawamori R, Kamada T (1995) 1,5-Anhydro-d-glucitol evaluates daily glycemic excursions in well-controlled NIDDM. Diabetes Care 18(8):1156–1159

    Article  CAS  PubMed  Google Scholar 

  6. Yamanouchi T, Moromizato H, Shinohara T, Minoda S, Miyashita H, Akaoka I (1992) Estimation of plasma glucose fluctuation with a combination test of hemoglobin A1c and 1,5-anhydroglucitol. Metabolism 41(8):862–867

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe M, Kokubo Y, Higashiyama A, Ono Y, Miyamoto Y, Okamura T (2011) Serum 1,5-anhydro-d-glucitol levels predict first-ever cardiovascular disease: an 11-year population-based cohort study in Japan, the Suita study. Atherosclerosis 216(2):477–483

    Article  CAS  PubMed  Google Scholar 

  8. Ogihara T, Kikuchi K, Matsuoka H, Fujita T, Higaki J, Horiuchi M, Imai Y, Imaizumi T, Ito S, Iwao H, Kario K, Kawano Y, Kim-Mitsuyama S, Kimura G, Matsubara H, Matsuura H, Naruse M, Saito I, Shimada K, Shimamoto K, Suzuki H, Takishita S, Tanahashi N, Tsuchihashi T, Uchiyama M, Ueda S, Ueshima H, Umemura S, Ishimitsu T, Rakugi H (2009) The Japanese society of hypertension guidelines for the management of hypertension (JSH 2009). Hypertens Res 32(1):3–107

    CAS  PubMed  Google Scholar 

  9. Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E, Ito C, Inagaki N, Iwamoto Y, Kasuga M, Hanafusa T, Haneda M, Ueki K (2010) Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetol Int 1(1):2–20

    Article  Google Scholar 

  10. Harris P, Conley M, Behar V, Rosati R (1979) The prognostic significance of the degree of coronary stenosis. Am J Cardiol 43(2):343

    Google Scholar 

  11. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53(6):982–992

    Article  CAS  PubMed  Google Scholar 

  12. Selvin E, Coresh J, Golden SH, Brancati FL, Folsom AR, Steffes MW (2005) Glycemic control and coronary heart disease risk in persons with and without diabetes: the atherosclerosis risk in communities study. Arch Intern Med 165(16):1910–1916

    Article  PubMed  Google Scholar 

  13. Dworacka M, Winiarska H (2005) The application of plasma 1,5-anhydro-d-glucitol for monitoring type 2 diabetic patients. Dis Markers 21(3):127–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dworacka M, Winiarska H, Borowska M, Abramczyk M, Bobkiewicz-Kozlowska T, Dworacki G (2007) Pro-atherogenic alterations in T-lymphocyte subpopulations related to acute hyperglycaemia in type 2 diabetic patients. Circ J 71(6):962–967

    Article  CAS  PubMed  Google Scholar 

  15. Ohira M, Endo K, Oyama T, Yamaguchi T, Ban N, Kawana H, Nagayama D, Nagumo A, Saiki A, Murano T, Watanabe H, Miyashita Y, Shirai K (2011) Improvement of postprandial hyperglycemia and arterial stiffness upon switching from premixed human insulin 30/70 to biphasic insulin aspart 30/70. Metabolism 60(1):78–85

    Article  CAS  PubMed  Google Scholar 

  16. Su G, Mi S, Tao H, Li Z, Yang H, Zheng H, Zhou Y, Ma C (2011) Association of glycemic variability and the presence and severity of coronary artery disease in patients with type 2 diabetes. Cardiovasc Diabetol 10:19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ashraf H, Boroumand MA, Amirzadegan A, Talesh SA, Davoodi G (2013) Hemoglobin A1C in non-diabetic patients: an independent predictor of coronary artery disease and its severity. Diabetes Res Clin Pract 102(3):225–232

    Article  CAS  PubMed  Google Scholar 

  18. Yamanouchi T, Akanuma Y, Toyota T, Kuzuya T, Kawai T, Kawazu S, Yoshioka S, Kanazawa Y, Ohta M, Baba S, Kosaka K (1991) Comparison of 1,5-anhydroglucitol, HbA1c, and fructosamine for detection of diabetes mellitus. Diabetes 40(1):52–57

    Article  CAS  PubMed  Google Scholar 

  19. Goto M, Yamamoto-Honda R, Shimbo T, Goto A, Terauchi Y, Kanazawa Y, Noda M (2011) Correlation between baseline serum 1,5-anhydroglucitol levels and 2-hour post-challenge glucose levels during oral glucose tolerance tests. Endocr J 58(1):13–17

    Article  CAS  PubMed  Google Scholar 

  20. Buse JB, Ginsberg HN, Bakris GL, Clark NG, Costa F, Eckel R, Fonseca V, Gerstein HC, Grundy S, Nesto RW, Pignone MP, Plutzky J, Porte D, Redberg R, Stitzel KF, Stone NJ (2007) Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care 30(1):162–172

    Article  CAS  PubMed  Google Scholar 

  21. Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG, Friedewald WT (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358(24):2545–2559

    Article  CAS  PubMed  Google Scholar 

  22. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356(24):2457–2471

    Article  CAS  PubMed  Google Scholar 

  23. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M (2003) Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 290(4):486–494

    Article  CAS  PubMed  Google Scholar 

  24. Yokoyama J, Sutoh N, Higuma T, Horiuchi D, Katoh C, Yokota T, Echizen T, Sasaki S, Hanada H, Osanai T, Okumura K (2007) Efficacy and safety of low-dose pioglitazone after primary coronary angioplasty with the use of bare metal stent in patients with acute myocardial infarction and with type 2 diabetes mellitus or impaired glucose tolerance. Heart Vessels 22(3):146–151

    Article  PubMed  Google Scholar 

  25. Holman RR, Haffner SM, McMurray JJ, Bethel MA, Holzhauer B, Hua TA, Belenkov Y, Boolell M, Buse JB, Buckley BM, Chacra AR, Chiang FT, Charbonnel B, Chow CC, Davies MJ, Deedwania P, Diem P, Einhorn D, Fonseca V, Fulcher GR, Gaciong Z, Gaztambide S, Giles T, Horton E, Ilkova H, Jenssen T, Kahn SE, Krum H, Laakso M, Leiter LA, Levitt NS, Mareev V, Martinez F, Masson C, Mazzone T, Meaney E, Nesto R, Pan C, Prager R, Raptis SA, Rutten GE, Sandstroem H, Schaper F, Scheen A, Schmitz O, Sinay I, Soska V, Stender S, Tamas G, Tognoni G, Tuomilehto J, Villamil AS, Vozar J, Califf RM (2010) Effect of nateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med 362(16):1463–1476

    Article  CAS  PubMed  Google Scholar 

  26. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, Cavender MA, Udell JA, Desai NR, Mosenzon O, McGuire DK, Ray KK, Leiter LA, Raz I (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369(14):1317–1326

    Article  CAS  PubMed  Google Scholar 

  27. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S, Wilson C, Cushman WC, Zannad F (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369(14):1327–1335

    Article  CAS  PubMed  Google Scholar 

  28. Sawada T, Shiotani H, Terashita D, Nagasawa Y, Kim SS, Koide M, Yokoyama M (2013) Comparison of effects of α-glucosidase inhibitors and glinide drugs on endothelial dysfunction in diabetic patients with coronary artery disease. Circ J 78(1):248–255

    PubMed  Google Scholar 

  29. Watanabe K, Suzuki T, Ouchi M, Suzuki K, Ohara M, Hashimoto M, Yamashita H, Okazaki M, Ishii K, Oba K (2013) Relationship between postprandial glucose level and carotid artery stiffness in patients without diabetes or cardiovascular disease. BMC Cardiovasc Disord 13:11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ouchi M, Oba K, Motoyama M, Tsunoda M, Yamashita H, Aoyama J, Saigusa T, Ishii K, Yano H, Hashimoto M, Sekimizu KI, Suzuki T, Nakano H (2013) Postprandial glycemic control conditions in relation to urinary N-acetyl-beta-d-glucosaminidase in patients with type 2 diabetes mellitus without low glomerular filtration rate. Diabetes Technol Ther 16(1):41–47

    Article  PubMed  Google Scholar 

  31. Hashiba M, Ono M, Hyogo H, Ikeda Y, Masuda K, Yoshioka R, Ishikawa Y, Nagata Y, Munekage K, Ochi T, Hirose A, Nozaki-Fujimura Y, Noguchi S, Okamoto N, Chayama K, Suganuma N, Saibara T (2013) Glycemic variability is an independent predictive factor for development of hepatic fibrosis in nonalcoholic fatty liver disease. PLoS ONE 8(11):e76161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank staff at our hospital for assistance in sample collection and patients for their participation in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Momomura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, T., Yoshida, M., Yamada, H. et al. Lower 1,5-anhydroglucitol is associated with denovo coronary artery disease in patients at high cardiovascular risk. Heart Vessels 30, 469–476 (2015). https://doi.org/10.1007/s00380-014-0502-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-014-0502-y

Keywords

Navigation