Skip to main content

Advertisement

Log in

Applying the National Institute for Clinical Excellence criteria to patients treated with the Genous™ Bio-engineered R stent™: a sub-study of the e-HEALING (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth) worldwide registry

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The National Institute for Clinical Excellence (NICE) guidelines recommend the use of bare-metal stents (BMS) in non-complex lesions with a low risk of restenosis (diameter ≥3 mm and lesion length ≤15 mm) and the use of drug-eluting stents (DES) in more complex lesions with a high risk of restenosis (diameter <3.0 mm or lesion length >15 mm). However, the guidelines were created based on studies evaluating BMS and DES only. We performed an analysis of patients undergoing non-urgent percutaneous coronary intervention with the novel endothelial cell capturing stent (ECS). The ECS is coated with CD34+ antibodies that attract circulating endothelial progenitor cells to the stent surface, thereby accelerating the endothelialization of the stented area. We analyzed all patients enrolled in the worldwide e-HEALING registry that met the NICE criteria for either low-risk or high-risk lesions and were treated with ≥1 ECS. The main study outcome was target vessel failure (TVF) at 12-month follow-up, defined as the composite of cardiac death or MI and target vessel revascularization (TVR). A total of 4,241 patients were assessed in the current analysis. At 12-month follow-up, TVF occurred in 7.0% of the patients with low-risk lesions and in 8.8% of the patients with high-risk lesions (p = 0.045). When evaluating the diabetic patients versus the non-diabetic patients per risk group, no significant differences were found in TVF, MI or TVR in either risk group. The ECS shows good clinical outcomes in lesions carrying either a high or a low risk of restenosis according to the NICE guidelines with comparable rates of cardiac death, myocardial infarction, and stent thrombosis. The TVF rate with ECS was slightly higher in patients with high-risk lesions, driven by higher clinically driven TLR. The risk of restenosis with ECS in patients carrying high-risk lesions needs to be carefully considered relative to other risks associated with DES. Furthermore, the presence of diabetes mellitus did not influence the incidence of TVF in either risk group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DES:

Drug-eluting stent

BMS:

Bare metal stent

ST:

Stent thrombosis

DAPT:

Dual anti-platelet therapy

PCI:

Percutaneous coronary intervention

NICE:

National Institute for Clinical Excellence

ECS:

Endothelial progenitor cell capturing stent

EPC:

Endothelial progenitor cells

HEALING:

Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth registry

MI:

Myocardial infarction

TVF:

Target vessel failure

TVR:

Target vessel revascularization

TLR:

Target lesion revascularization

CEC:

Clinical Event Committee

IRD:

Insulin requiring diabetic

NIRD:

Non-insulin requiring diabetic

CABG:

Coronary artery bypass grafting

PES:

Paclitaxel-eluting stent

SES:

Sirolimus-eluting stent

References

  1. Colombo A, Drzewiecki J, Banning A, Grube E, Hauptmann K, Silber S, Dudek D, Fort S, Schiele F, Zmudka K, Guagliumi G, Russell ME (2003) Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions. Circulation 108:788–794

    Article  PubMed  CAS  Google Scholar 

  2. Grube E, Silber S, Hauptmann KE, Mueller R, Buellesfeld L, Gerckens U, Russell ME (2003) TAXUS I: six- and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation 107:38–42

    Article  PubMed  CAS  Google Scholar 

  3. Miyai N, Kinoshita N, Oota K, Yamada T, Nakamura R, Irie H, Hashimoto T, Tamaki S, Matsubara H (2011) Long-term angiographic outcomes of post-sirolimus-eluting stent restenosis in Japanese patients. Heart Vessels 26:168–175

    Article  PubMed  Google Scholar 

  4. Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban HE, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnar F, Falotico R (2002) A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 346:1773–1780

    Article  PubMed  CAS  Google Scholar 

  5. Stone GW, Ellis SG, Cox DA, Hermiller J, O’Shaughnessy C, Mann JT, Turco M, Caputo R, Bergin P, Greenberg J, Popma JJ, Russell ME (2004) One-year clinical results with the slow-release, polymer-based, paclitaxel-eluting TAXUS stent: the TAXUS-IV trial. Circulation 109:1942–1947

    Article  PubMed  CAS  Google Scholar 

  6. Finn AV, Joner M, Nakazawa G, Kolodgie F, Newell J, John MC, Gold HK, Virmani R (2007) Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation 115:2435–2441

    Article  PubMed  Google Scholar 

  7. Hofma SH, van der Giessen WJ, van Dalen BM, Lemos PA, McFadden EP, Sianos G, Ligthart JM, van ED, de Feyter PJ, Serruys PW (2006) Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation. Eur Heart J 27:166–170

    Article  PubMed  Google Scholar 

  8. Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, Kutys R, Skorija K, Gold HK, Virmani R (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48:193–202

    Article  PubMed  Google Scholar 

  9. Ong AT, McFadden EP, Regar E, de Jaegere PP, van Domburg RT, Serruys PW (2005) Late angiographic stent thrombosis (LAST) events with drug-eluting stents. J Am Coll Cardiol 45:2088–2092

    Article  PubMed  CAS  Google Scholar 

  10. Eisenstein EL, Anstrom KJ, Kong DF, Shaw LK, Tuttle RH, Mark DB, Kramer JM, Harrington RA, Matchar DB, Kandzari DE, Peterson ED, Schulman KA, Califf RM (2007) Clopidogrel use and long-term clinical outcomes after drug-eluting stent implantation. JAMA 297:159–168

    Article  PubMed  CAS  Google Scholar 

  11. Grines CL, Bonow RO, Casey DE Jr, Gardner TJ, Lockhart PB, Moliterno DJ, O’Gara P, Whitlow P (2007) Prevention of premature discontinuation of dual antiplatelet therapy in patients with coronary artery stents: a science advisory from the American Heart Association, American College of Cardiology, Society for Cardiovascular Angiography and Interventions, American College of Surgeons, and American Dental Association, with representation from the American College of Physicians. J Am Dent Assoc 138:652–655

    PubMed  Google Scholar 

  12. Ndrepepa G, Keta D, Schulz S, Mehilli J, Birkmeier A, Neumann FJ, Schomig A, Kastrati A (2010) Characterization of patients with bleeding complications who are at increased risk of death after percutaneous coronary intervention. Heart Vessels 25:294–298

    Article  PubMed  Google Scholar 

  13. Spertus JA, Kettelkamp R, Vance C, Decker C, Jones PG, Rumsfeld JS, Messenger JC, Khanal S, Peterson ED, Bach RG, Krumholz HM, Cohen DJ (2006) Prevalence, predictors, and outcomes of premature discontinuation of thienopyridine therapy after drug-eluting stent placement: results from the PREMIER registry. Circulation 113:2803–2809

    Article  PubMed  CAS  Google Scholar 

  14. Elezi S, Kastrati A, Neumann FJ, Hadamitzky M, Dirschinger J, Schomig A (1998) Vessel size and long-term outcome after coronary stent placement. Circulation 98:1875–1880

    Article  PubMed  CAS  Google Scholar 

  15. Ellis SG, Bajzer CT, Bhatt DL, Brener SJ, Whitlow PL, Lincoff AM, Moliterno DJ, Raymond RE, Tuzcu EM, Franco I, Dushman-Ellis S, Lander KJ, Schneider JP, Topol EJ (2004) Real-world bare metal stenting: identification of patients at low or very low risk of 9-month coronary revascularization. Catheter Cardiovasc Interv 63:135–140

    Article  PubMed  Google Scholar 

  16. Kastrati A, Elezi S, Dirschinger J, Hadamitzky M, Neumann FJ, Schomig A (1999) Influence of lesion length on restenosis after coronary stent placement. Am J Cardiol 83:1617–1622

    Article  PubMed  CAS  Google Scholar 

  17. National Institute for Health and Clinical Excellence. NICE Technology appraisals TA152. Drug-eluting stents for the treatment of coronary artery disease. 2010. http://guidance.nice.org.uk/TA152

  18. Silber S, Albertsson P, Aviles FF, Camici PG, Colombo A, Hamm C, Jorgensen E, Marco J, Nordrehaug JE, Ruzyllo W, Urban P, Stone GW, Wijns W (2005) Guidelines for percutaneous coronary interventions. The Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology. Eur Heart J 26:804–847

    Article  PubMed  Google Scholar 

  19. Kutryk MJ, Kuliszewski MA (2003) In vivo endothelial progenitor cell seeding for the accelerated endothelialization of endovascular devices. Am J Cardiol 92(6A):94L–95L

    Google Scholar 

  20. Kutryk MJ, kuliszewski MA (2003) In vivo endothelial progenitor seeding of stented arterial segments and vascular grafts. Circulation 108(suppl):IV-573

    Google Scholar 

  21. Kutryk MJ, kuliszewski MA (2004) The future beyond drug eluting stents: endothelial cell capture. Int Symp Endovas Ther. Course Syllabus:125–129

  22. Aoki J, Serruys PW, van BH, Ong AT, McFadden EP, Sianos G, van der Giessen WJ, Regar E, de Feyter PJ, Davis HR, Rowland S, Kutryk MJ (2005) Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J Am Coll Cardiol 45:1574–1579

    Article  PubMed  CAS  Google Scholar 

  23. Duckers HJ, Silber S, de Winter RJ, den Heijer P, Rensing B, Rau M, Mudra H, Benit E, Verheye S, Wijns W, Serruys PW (2007) Circulating endothelial progenitor cells predict angiographic and intravascular ultrasound outcome following percutaneous coronary interventions in the HEALING-II trial: evaluation of an endothelial progenitor cell capturing stent. EuroInterv 3:67–75

    Article  Google Scholar 

  24. Duckers HJ, Soullie T, den Heijer P, Rensing B, de Winter RJ, Rau M, Mudra H, Silber S, Benit E, Verheye S, Wijns W, Serruys PW (2007) Accelerated vascular repair following percutaneous coronary intervention by capture of endothelial progenitor cells promotes regression of neointimal growth at long term follow-up: final results of the Healing II trial using an endothelial progenitor cell capturing stent (Genous R stent)™. EuroInterv 3:350–358

    Article  Google Scholar 

  25. Beijk MA, Klomp M, Verouden CJW, Henriques JPS, Baan J, Vis MM, Piek JJ, Tijssen JGP, de Winter RJ (2011) Two-year follow-up of the Genous™ endothelial progenitor cell capturing stent versus the Taxus Liberté stent in patients with de novo coronary artery lesions with a high-risk of restenosis: a randomized, single-center, pilot study. Catheter Cardiovasc Interv. doi:10.1002/ccd.23143

  26. Beijk MA, Klomp M, Verouden NJ, van GN, Koch KT, Henriques JP, Baan J, Vis MM, Scheunhage E, Piek JJ, Tijssen JG, de Winter RJ (2010) Genous endothelial progenitor cell capturing stent vs. the Taxus Liberte stent in patients with de novo coronary lesions with a high-risk of coronary restenosis: a randomized, single-centre, pilot study. Eur Heart J 31:1055–1064

    Article  PubMed  Google Scholar 

  27. Klomp M, Beijk MA, Tijssen Phd JG, de Winter RJ (2011) One-year clinical outcome in an unselected patient population treated with the genous endothelial progenitor cell capturing stent. Catheter Cardiovasc Interv 77:809–817

    Article  PubMed  Google Scholar 

  28. Miglionico M, Patti G, D’Ambrosio A, Di SG (2008) Percutaneous coronary intervention utilizing a new endothelial progenitor cells antibody-coated stent: a prospective single-center registry in high-risk patients. Catheter Cardiovasc Interv 71:600–604

    Article  PubMed  Google Scholar 

  29. Silber S, Damman P, Klomp M, Grisold M, Ribeiro RE, Suryapranata H, Wojcik J, Sim K, Tijssen JG, de Winter RJ (2011) Clinical results after coronary stenting with the Genous™ Bio-engineered R stent™: 12-month outcomes of the e-HEALING (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth) worldwide registry. EuroInterv 6:819–825

    Article  Google Scholar 

  30. Cutlip DE, Windecker S, Mehran R, Boam A, Cohen DJ, Van Es GA, Steg PG, Morel MA, Mauri L, Vranckx P, McFadden E, Lansky A, Hamon M, Krucoff MW, Serruys PW (2007) Clinical end points in coronary stent trials: a case for standardized definitions. Circulation 115:2344–2351

    Article  PubMed  Google Scholar 

  31. Klomp M, Beijk MA, Varma C, Koolen JJ, Teiger E, Richardt G, Bea F, van Geloven N, Verouden CJW, Chan YK, Woudstra P, Damman P, Tijssen JGP, de Winter RJ (2010) One-year outcome of the TRIAS high risk study; a multi-center randomized trial comparing the Genous™ EPC capturing stent with first-generation drug-eluting stens. Abstract. TCT 2010 convention, Washington, USA

  32. Abizaid A, Kornowski R, Mintz GS, Hong MK, Abizaid AS, Mehran R, Pichard AD, Kent KM, Satler LF, Wu H, Popma JJ, Leon MB (1998) The influence of diabetes mellitus on acute and late clinical outcomes following coronary stent implantation. J Am Coll Cardiol 32:584–589

    Article  PubMed  CAS  Google Scholar 

  33. Elezi S, Kastrati A, Pache J, Wehinger A, Hadamitzky M, Dirschinger J, Neumann FJ, Schomig A (1998) Diabetes mellitus and the clinical and angiographic outcome after coronary stent placement. J Am Coll Cardiol 32:1866–1873

    Article  PubMed  CAS  Google Scholar 

  34. Schofer J, Schluter M, Rau T, Hammer F, Haag N, Mathey DG (2000) Influence of treatment modality on angiographic outcome after coronary stenting in diabetic patients: a controlled study. J Am Coll Cardiol 35:1554–1559

    Article  PubMed  CAS  Google Scholar 

  35. Stein B, Weintraub WS, Gebhart SP, Cohen-Bernstein CL, Grosswald R, Liberman HA, Douglas JS Jr, Morris DC, King SB III (1995) Influence of diabetes mellitus on early and late outcome after percutaneous transluminal coronary angioplasty. Circulation 91:979–989

    Article  PubMed  CAS  Google Scholar 

  36. Klomp M, Beijk MA, Verouden NJ, Tijssen JG, de Winter RJ (2009) Design and rationale of the TRI-stent adjudication study (TRIAS) program. Am Heart J 158:527–532

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all centers and investigators participating in the e-HEALING registry. Most importantly, we thank all participating patients.

Conflict of interest

The Academic Medical Center received unrestricted research grant support from OrbusNeich Medical BV. The e-HEALING Registry was funded by OrbusNeich Medical BV, The Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robbert J. de Winter.

Additional information

On behalf of the e-HEALING investigators.

M. Klomp, P. Damman, and M. A. M. Beijk contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klomp, M., Damman, P., Beijk, M.A.M. et al. Applying the National Institute for Clinical Excellence criteria to patients treated with the Genous™ Bio-engineered R stent™: a sub-study of the e-HEALING (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth) worldwide registry. Heart Vessels 27, 360–369 (2012). https://doi.org/10.1007/s00380-011-0167-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-011-0167-8

Keywords

Navigation