Skip to main content
Log in

Fatigue life analysis and experimental verification of coronary stent

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

A computational and experimental method on biomechanics of stent is presented to analyze the stress distribution of different phases and evaluate the fatigue life according to Goodman criteria. As a result, the maximum stress and alternating stress were always located at the curvature area of rings, the fatigue bands in the experiment also verified the computation rationality. Matching between the numerical simulation and experimental results was satisfactory, which proved that the finite element analysis could provide theoretical evidence and help design and optimize the stent structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sasaki Y, Hwang MW, Shirasawa K, Takeda S, Ayukawa H, Inenaga-Kitaura K, Takeoka R, Kitaura Y, Kawai C (2008) Stenting for superficial femoral artery atherosclerotic occlusion: long-term follow-up results. Heart Vessels 23(4):264–270

    Article  PubMed  Google Scholar 

  2. Tanaka S, Watanabe S, Matsuo H, Segawa T, Iwama M, Hirose T, Takahashi H, Ono Y, Warita S, Kojima T, Minatoguchi S, Fujiwara H (2008). Prospective randomized trial comparing a nitinol self-expanding coronary stent with low-pressure dilatation and a high-pressure balloon expandable bare metal stent. Heart Vessels 23(1):1–8

    Article  PubMed  Google Scholar 

  3. Omurlu K, Ozeke O (2008) Side-by-side false and true lumen stenting for recanalization of the chronically occluded right coronary artery. Heart Vessels 23(4):282–285

    Article  PubMed  Google Scholar 

  4. Serruys PW, Kutryk MJB, Ong ATL (2006) Coronary-artery stents. N Engl J Med 354(5):483–495

    Article  PubMed  CAS  Google Scholar 

  5. Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnar F, Falotico R (2002) A randomized comparison of a sirolimuseluting stent with a standard stent for coronary revascularization. N Engl J Med 346(23):1773–1780

    Article  PubMed  CAS  Google Scholar 

  6. British Standard: BS EN 14299 (2004) Non active surgical implantsparticular requirements for cardiac and vascular implants-specific requirements for arterial stents. 12 pp

  7. US Food and Drug Administration (2005) The guidance for industry and FDA staff: non-clinical tests and recommended labeling for intravascular stents and associated delivery systems. pp 14–19

  8. Migliavacca F, Petrini L, Montanari V, Quagliana I, Auricchio F, Dubini G (2005) A predictive study of the mechanical behaviour of coronary stents by computer modeling. Med Eng Phys 27(1):13–18

    Article  PubMed  Google Scholar 

  9. De Beule M, Van Impe R, Verhegghe B, Segers P, Verdonck P (2006).Finite element analysis and stent design: Reduction of dogboning. Technol Health Care 14(4-5):233–241

    PubMed  Google Scholar 

  10. Takashima K, Kitou T, Mori K, Ikeuchi K (2007) Simulation and experimental observation of contact conditions between stents and artery models. Med Eng Phys 29(3):326–335

    Article  PubMed  Google Scholar 

  11. Dehlaghi V, Shadpoor MT, Najarian S (2008) Analysis of wall shear stress in stented coronary artery using 3D computational fluid dynamics modeling. J Mater Process Technol 197(1-3): 174–181

    Article  CAS  Google Scholar 

  12. Holzapfel GA, Stadler M, Gasser TC (2005) Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J Biomech Eng 127(1):166–180

    Article  PubMed  Google Scholar 

  13. Chua SND, Macdonald BJ, Hashmi MSJ (2004) Finite-element simulation of slotted tube (stent) with the presence of plaque and artery by balloon expansion. J Mater Process Technol 155–156: 1772–1779

    Google Scholar 

  14. Chua SND, Macdonald BJ, Hashmi MSJ (2004) Effects of varying slotted tube (stent) geometry on its expansion behaviour using finite element method. J Mater Process Technol 155-156: 1764–1771

    Article  Google Scholar 

  15. Gervaso F, Capelli C, Petrini L, Lattanzio S, Di Virgilio L, Migliavacca F (2008) On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J Biomech 41(6):1206–1212

    Article  PubMed  Google Scholar 

  16. De Beule M, Mortier P, Carlier SG, Verhegghe B, Van Impe R, Verdonck P (2008) Realistic finite element-based stent design: The impact of balloon folding. J Biomech 41(2):383–389

    Article  PubMed  Google Scholar 

  17. Dumoulin C, Cochelin B (2000) Mechanical behaviour modelling of balloon-expandable stents. J Biomech 33:1461–1470

    Article  PubMed  CAS  Google Scholar 

  18. Lau KW, Sigwart U (1991) Intracoronary stents. Indian Heart J 43:127–139

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Luo, Q., Xie, Z. et al. Fatigue life analysis and experimental verification of coronary stent. Heart Vessels 25, 333–337 (2010). https://doi.org/10.1007/s00380-009-1203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-009-1203-9

Key words

Navigation