Skip to main content
Log in

Metformin inhibits nuclear factor κB activation and decreases serum high-sensitivity C-reactive protein level in experimental atherogenesis of rabbits

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Previous studies demonstrated that metformin has obvious antiatherogenic properties, but the exact mechanism remains unclear. Therefore, we established an atherosclerotic rabbit model in order to investigate the potential effects of metformin on transcription factor nuclear factor κB (NF-κB) and serum high-sensitivity C-reactive protein (hs-CRP) level, which had been regarded as proatherogenic factors. New Zealand rabbits were randomly divided into three groups: a control group (n = 8), an atherosclerotic group (AS group, n = 8), and a metformin treatment group (Met group, n = 8). The experimental atherosclerotic rabbit model was successfully established at the end of the 8th week. From the 9th week, rabbits in the Met group were administered with 150 mg/kg metformin daily by gavage. Blood samples were collected at days 0 and 8, and at 16 weeks to detect the level of blood lipid and serum glucose. At the end of the experiment, blood samples were withdrawn for determining serum hs-CRP. Aortic samples were harvested for histomorphometric analysis. Immunohistochemistry and Western blotting were used to detect the expression of NF-κB subunit p65 in nuclear extracts and phosphorylation of inhibitor of nuclear factor κB (IκB) in cytoplasmic extracts. An experimental atherosclerotic rabbit model was successfully established. The expression of nuclear NF-κB subunit p65 and cytoplasmic phosphorylation of IκB protein in the vessel wall was enhanced (P < 0.01, respectively) in the AS group, and serum hs-CRP level was significantly increased in the AS group compared with the control group (3.90 ± 0.25 mg/l versus 1.36 ± 0.14 mg/l, P < 0.01). Treatment with metformin significantly attenuated the progression of aortic atherosclerosis. In the Met group, there was a marked reduction in nuclear NF-κB subunit p65 and cytoplasmic phosphorylation of IκB protein expression (P < 0.01). Serum hs-CRP concentration was also significantly decreased (3.20 ± 0.20 mg/l versus 3.90 ± 0.25 mg/l, P < 0.05). Metformin inhibits the phosphorylation of IκB and the activation of NF-κB in the vessel wall of experimental atherogenesis of rabbits, as well as decreasing the serum level of hs-CRP, thus suggesting that metformin has vascular anti-inflammatory properties, which may be one of its antiatherogenic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  2. Libby P (2002) Inflammation in atherosclerosis. Nature 420: 868–874

    Article  CAS  PubMed  Google Scholar 

  3. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    Article  CAS  PubMed  Google Scholar 

  4. Hansson GK, Libby P, Schonbeck U, Yan Z-Q (2002) Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 91:281–291

    Article  CAS  PubMed  Google Scholar 

  5. de Winther MP, Kanters E, Kraal G, Hofker MH (2005) Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 25:904–914

    Article  PubMed  CAS  Google Scholar 

  6. Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, Page M, Kaltschmidt C, Baeuerle PA, Neumeier D (1996) Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest 97 (7):1715–1722

    Article  CAS  PubMed  Google Scholar 

  7. Wilson SH, Caplice NM, Simari RD, Holmes DR Jr, Carlson PJ, Lerman A (2000) Activated nuclear factor-κB is present in the coronary vasculature in experimental hypercholesterolemia. Atherosclerosis 148:23–30

    Article  CAS  PubMed  Google Scholar 

  8. Jawień J, Gajda M, Mateuszuk Ł, Olszanecki R, Jakubowski A, Szlachcic A, Korabiowska M, Korbut R (2005) Inhibition of nuclear factor-kappaB attenuates arthrosclerosis in apoE/lDLR-double knockout mice. J Physiol Pharmacol 56(3):483–489

    PubMed  Google Scholar 

  9. Monaco C, Paleolog E (2004) Nuclear factor kappaB: a potential therapeutic target in atherosclerosis and thrombosis. Cardiovasc Res 61(4):671–682

    Article  CAS  PubMed  Google Scholar 

  10. Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, Lowe GD, Pepys MB, Gudnason V (2004) C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350:1387–1397

    Article  CAS  PubMed  Google Scholar 

  11. Jialal I, Devaraj S, Venugopal SK (2004) C-reactive protein: risk marker or mediator in atherothrombosis. Hypertension 44: 6–11

    Article  CAS  PubMed  Google Scholar 

  12. Mamputu JC, Wiernsperger NF, Renier G (2003) Antiatherogenic properties of metformin: the experimental evidence. Diabetes Metab 29:6S71–6S76

    CAS  PubMed  Google Scholar 

  13. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group (1998) Lancet 352:854–865

    Google Scholar 

  14. Yang XY, Wang L, Zeng HS, Zhou N, Pu J, Yuan YH (2006) Effects of simvastatin on nuclear factor κB-DNA binding activity and matrix metalloproteinase-1 and 3 protein expression in atherosclerosis model of rabbit. J Huazhong Univ Sci Technol Med Sci 26(2):194–198

    Article  CAS  PubMed  Google Scholar 

  15. Nandeesha H, Koner BC, Dorairajan LN, Sen SK (2006) Hyperinsulinemia and dyslipidemia in non-diabetic benign prostatic hyperplasia. Clin Chim Acta 370(1-2):89–93

    Article  CAS  PubMed  Google Scholar 

  16. Ross R (1995) Cell biology of atherosclerosis. Ann Rev Physiol 57:791–804

    Article  CAS  Google Scholar 

  17. Siebenlist U, Franzoso G, Brown K (1994) Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol 10:405–455

    Article  CAS  PubMed  Google Scholar 

  18. Sen R, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716

    Article  CAS  PubMed  Google Scholar 

  19. Sen R, Baltimore D (1986) Inducibility of kappa immunoglobulin enhancer-binding protein NF-kappa B by a posttranslational mechanism. Cell 47:921–928

    Article  CAS  PubMed  Google Scholar 

  20. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224

    Article  CAS  PubMed  Google Scholar 

  21. Yamamoto Y, Gaynor RB (2004) IkappaB kinases: key regulators of the NF-kappaB pathway. Trends Biochem Sci 29:72–79

    Article  CAS  PubMed  Google Scholar 

  22. Baldwin AS (2001) The transcription factor NF-kappa B and human disease. J Clin Invest 107:3–6

    Article  CAS  PubMed  Google Scholar 

  23. Ghosh S, Karin M (2001) Missing pieces in the NF-kappaB puzzle. Cell 109(suppl):S81–S96

    Google Scholar 

  24. Ritchie ME (1998) Nuclear factor-κB is selectively and markedly activated in humans with unstable angina pectoris. Circulation 98:1707–1713

    CAS  PubMed  Google Scholar 

  25. Ridker PM (2003) High-sensitivity C-reactive protein and cardiovascular risk: rational for screening and primary prevention. Am J Cardiol 92(suppl):17k–22k

    Article  CAS  PubMed  Google Scholar 

  26. Pasceri V, Willerson J, Yeh E (2000) Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 102:2165–2168

    CAS  PubMed  Google Scholar 

  27. Hattori Y, Matsumura M, Kasai K (2003) Vascular smooth muscle cell activation by C-reactive protein. Cardiovasc Res 58(1):186–195

    Article  CAS  PubMed  Google Scholar 

  28. Zwaka T, Hombach V, Torzewski J (2001) C-reactive proteinmediated low density lipoprotein uptake by macrophages: implications for atherosclerosis. Circulation 103:1194–1197

    CAS  PubMed  Google Scholar 

  29. Verma S, Kuliszewski MA, Li SH, Szmitko PE, Zucco L, Wang CH, Badiwala MV, Mickle DA, Weisel RD, Fedak PW, Stewart DJ, Kutryk MJ (2004) C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation 109:2058–2067

    Article  CAS  PubMed  Google Scholar 

  30. Torzewski J, Torzewski M, Bowyer DE, Frohlich M, Koenig W, Waltenberger J, Fitzsimmons C, Hombach V (1998) C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries. Arterioscler Thromb Vasc Biol 18:1386–1392

    CAS  PubMed  Google Scholar 

  31. Paul A, Ko KW, Li L, Yechoor V, McCrory MA, Szalai AJ, Chan L (2004) C-reactive protein accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Circulation 109(5): 647–655

    Article  CAS  PubMed  Google Scholar 

  32. IDF Clinical Guidelines Task Force (2006) Global guidelines for type 2 diabetes: recommendations for standard, comprehensive, and minimal care. Diabet Med 23:579–593

    Article  Google Scholar 

  33. Wiernsperger NF, Bailey CJ (1999) The antihyperglycaemic effect of metformin: therapeutic and cellular mechanisms. Drugs 58 Suppl 1:31–9; discussion 75–82

    Article  Google Scholar 

  34. Gin H, Roudaut MF, Vergnot V, Baillet L, Rigalleau V Effect of metformin on fibrinolytic parameters in insulin-treated, type 2 diabetic patients. Diabetes Metab 29(5):505–508

  35. Nagi DK, Yudkin JS (2003) Effects of metformin on insulin resistance, risk factors for cardiovascular disease, and plasminogen activator inhibitor in NIDDM subjects: a study of two ethnic groups. Diabetes Care 16(4):621–629

    Article  Google Scholar 

  36. Vitale C, Mercuro G, Cornoldi A, Fini M, Volterrani M, Rosano GM (2005) Metformin improves endothelial function in patients with metabolic syndrome. J Intern Med 258(3):250–256

    Article  CAS  PubMed  Google Scholar 

  37. Tanaka Y, Iwamoto H, Onuma T, Kawamari R (1997) Inhibitory effect of metformin on formation of advanced glycation end products. Curr Ther Res 58(10):693–697

    Article  CAS  Google Scholar 

  38. Schoonbroodt S, Piette J (1997) Oxidative stress interference with the nuclear factor-kappa B activation pathways. Biochem Pharmacol 60(8):1075–1083

    Article  Google Scholar 

  39. Sirtori CR, Catapano A, Ghiselli GC, Innocenti AL, Rodriguez J (1977) Metformin: an antiatherosclerotic agent modifying very low density lipoproteins in rabbits. Atherosclerosis 26:79–89

    Article  CAS  PubMed  Google Scholar 

  40. Tremoli E, Ghiselli G, Maderna P, Colli S, Sirtori CR (1982) Metformin reduces platelet hypersensitivity in hypercholesterolemic rabbits. Atherosclerosis 41:53–60

    Article  CAS  PubMed  Google Scholar 

  41. Ewis SA, Abdel-Rahman MS (1995) Effect of metformin on glutathione and magnesium in normal and streptozotocin-induced diabetic rats. J Appl Toxicol 15:387–390

    Article  CAS  PubMed  Google Scholar 

  42. Bartnik M, Rydén L, Ferrari R, Malmberg K, Pyorala K, Simoons M, Standl E, Soler-Soler J, Öhrvik J (2004) The prevalence of abnormal glucose regulation in patients with coronary artery disease across Europe: The Euro Heart Survey on diabetes and the heart. Eur Heart J 25:1880–1890

    Article  CAS  PubMed  Google Scholar 

  43. Hu DY, Pan CY, Yu JM (2006) The relationship between coronary artery disease and abnormal glucose regulation in China: the China Heart Survey. Eur Heart J 27:2573–2579

    Article  CAS  PubMed  Google Scholar 

  44. Fujii N, Tsuchihashi K, Sasao H, Eguchi M, Miurakami H, Hase M, Higashiura K, Yuda S, Hashimoto A, Miura T, Ura N, Shimamoto K (2008) Insulin resistance functionally limits endothelium-dependent coronary vasodilation in nondiabetic patients. Heart Vessels 23(1):9–15

    Article  PubMed  Google Scholar 

  45. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115(5):1111–1119

    CAS  PubMed  Google Scholar 

  46. Ozer N, Tangurek B, Firat F, Ozer S, Tartan Z, Ozturk R, Ozay B, Ciloglu F, Yilmaz H, Cam N (2008) Effects of drug-eluting stents on systemic inflammatory response in patients with unstable angina pectoris undergoing percutaneous coronary intervention. Heart Vessels 23(2):75–82

    Article  PubMed  Google Scholar 

  47. De Jager J, Kooy A, Lehert P, Bets D, Wulffele MG, Teerlink T, Scheffer PG, Schalkwijk CG, Donker AJ, Stehouwer CD (2005) Effects of short-term treatment with metformin on markers of endothelial function and inflammatory activity in type 2 diabetes mellitus: a randomized, placebo-controlled trial. J Intern Med 257:100–109

    Article  PubMed  Google Scholar 

  48. Isoda K, Young JL, Zirlik A, MacFarlane LA, Tsuboi N, Gerdes N, Schonbeck U, Libby P (2006) Metformin inhibits proinflammatory responses and nuclear factor-κB in human vascular wall cells. Arterioscler Thromb Vasc Biol 26:611–617

    Article  CAS  PubMed  Google Scholar 

  49. Hattori Y, Suzuki K, Hattori S, Kasai K (2006) Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension 47:1183–1188

    Article  CAS  PubMed  Google Scholar 

  50. Pilon G, Dallaire P, Marette A (2004) Inhibition of inducible nitric-oxide synthase by activators of AMP-activated protein kinase: a new mechanism of action of insulin-sensitizing drugs. J Biol Chem 279(20):20767–20774

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, SN., Wang, X., Zeng, QT. et al. Metformin inhibits nuclear factor κB activation and decreases serum high-sensitivity C-reactive protein level in experimental atherogenesis of rabbits. Heart Vessels 24, 446–453 (2009). https://doi.org/10.1007/s00380-008-1137-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-008-1137-7

Key words

Navigation