Skip to main content
Log in

Adiponectin levels in coronary artery ectasia

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Etiopathogenesis of coronary artery ectasia (CAE), which is defi ned as abnormal dilatation of a segment of the coronary artery to 1.5 times of an adjacent normal coronary artery segment, is unclear. However, it is speculated that CAE develops in the atherosclerosis process through degeneration of coronary artery media layer. Our objective in this study is to compare levels of adiponectin between cases with CAE and normal coronary anatomy, and to examine whether adiponectin plays a role in CAE etiopathogenesis. The study registered a total of 66 cases, consisting of CAE cases (group 1, n = 36) and cases with normal coronary anatomy (group 2, n = 30). Taking coronary artery diameters of the control group cases as the reference, patients with abnormal segments 1.5 times larger than the adjacent segments were accepted as CAE. Serum adiponectin levels were 4.31 ± 2.02 µg/ml in group 1 and 6.73 ± 4.0 µg/ml in group 2 (P = 0.02). High-sensitivity Creactive protein was 4.8 ± 3.8 mg/l in group 1 and 3.6 ± 3.4 mg/l in group 2 (P > 0.05). There was a negative correlation between ectatic coronary artery diameter and plasma adiponectin level (P = 0.03; r = −0.339). It was known that adiponectin levels dropped in atherosclerotic heart disease. In this study we found low plasma adiponectin levels in acquired CAE, attributed to atherosclerosis. Therefore, we think that adiponectin might be playing a role in etiopathogenesis and progression of CAE. This in turn may indicate that hypo-adiponectinemia may be useful in revealing a realized risk in CAE. However, larger, randomized, multicenter studies are required to examine the role of adiponectin in the development of CAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartnell GG, Parnell BM, Pridie RB (1985) Coronary artery ectasia its prevalence and clinical significance in 4993 patients. Br Heart J 54:392–395

    Article  PubMed  CAS  Google Scholar 

  2. Krueger D, Stierle U, Herrmann G, Simon R, Sheikhzadeh A (1999) Exercise induced myocardial ischaemia in isolated coronary artery ectasias and aneurysms (“Dilated Coronaropathy”). J Am Coll Cardiol 34:1461–1470

    Article  Google Scholar 

  3. Markis JE, Joffe CD, Cohn PF, Feen DJ, Herman MV, Gorlin R (1976) Clinical significance of coronary arterial ectasia. Am J Cardiol 37:217–222

    Article  PubMed  CAS  Google Scholar 

  4. Diez JJ, Iglesias P (2003) The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 148: 293–300

    Article  PubMed  CAS  Google Scholar 

  5. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (1999) Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100:2473–2476

    PubMed  CAS  Google Scholar 

  6. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, Kihara S, Funahashi T, Tenner AJ, Tomiyama Y, Matsuzawa Y (2000) Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96:1723–1732

    PubMed  CAS  Google Scholar 

  7. Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yamashita T, Kamon J, Satoh H, Yano W, Froguel P, Nagai R, Kimura S, Kadowaki T, Noda T (2002) Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 277:25863–25866

    Article  PubMed  CAS  Google Scholar 

  8. Swaye PS, Fisher LD, Litwin P, Vignola PA, Judkins MP, Kemp HG, Mudd GJ, Gosselin AJ (1983) Aneurysmal coronary artery disease. Circulation 67:134–138

    PubMed  CAS  Google Scholar 

  9. Haffner SM, Miettinen H, Stern MP (1997) The homeostasis model in the San Antonio Heart Study. Diabetes Care 20:1087–1092

    Article  PubMed  CAS  Google Scholar 

  10. Sorrell VL, Davis MJ, Bove AA (1998) Current knowledge and significance of coronary artery ectasia: a chronologic review of the literature, recommendations for treatment, possible etiologies, and future considerations. Clin Cardiol 21:157–160

    Article  PubMed  CAS  Google Scholar 

  11. Seabra Gomes R, Somerville J, Ross DN, Emanuel R, Parker DJ, Wong M (1974) Congenital coronary artery aneurysms. Br Heart J 36:329–335

    Article  PubMed  CAS  Google Scholar 

  12. Björk VO, Björk L (1967) Intramural coronary artery aneurysm. A coronary artery steal syndrome. J Thorac Cardiovasc Surg 54:50–52

    Google Scholar 

  13. Vieweg WVR, Alpert JS, Hagan AD (1976) Caliber and distribution of normal coronary arterial anatomy. Cathet Cardiovasc Diagn 2:269–280

    Article  PubMed  CAS  Google Scholar 

  14. Swanton RH, Lea Thomas M, Coltart DJ, Jenkins BS, Webb-Peploe MM, Williams BT (1978) Coronary ectasia — a variant of occlusive coronary arteriosclerosis. Br Heart J 40: 393–400

    Article  PubMed  CAS  Google Scholar 

  15. Okamoto Y, Arita Y, Nishida M, Muraguchi M, Ouchi N, Takahashi M, Igura T, Inui Y, Kihara S, Nakamura T, Yamashita S, Miyagawa J, Funahashi T, Matsuzawa Y (2000) An adipocytederived plasma protein, adiponectin, adheres to injured vascular walls. Horm Metab Res 32:47–50

    Article  PubMed  CAS  Google Scholar 

  16. Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N, Kumada M, Okamoto Y, Nagaretani H, Nishizawa H, Kishida K, Komuro R, Ouchi N, Kihara S, Nagai R, Funahashi T, Matsuzawa Y (2002) Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem 277:37487–37491

    Article  PubMed  CAS  Google Scholar 

  17. Kotani K, Sakane N, Saiga K, Kato M, Ishida K, Kato Y, Kurozawa Y (2007) Serum adiponectin levels and lifestyle factors in Japanese men. Heart Vessels 22(5): 291–296

    Article  PubMed  Google Scholar 

  18. Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S, Ouchi N, Arita Y, Okamoto Y, Shimomura I, Hiraoka H, Nakamura T, Funahashi T, Matsuzawa Y. Osaka CAD Study Group. Coronary artery disease (2003) Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol 23:85–89

    Article  PubMed  CAS  Google Scholar 

  19. Gabay C and Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340:448–454

    Article  PubMed  CAS  Google Scholar 

  20. Biasucci LM, Colizzi C, Rizzello V, Vitrella G, Crea F, Liuzzo G (1999) Role in inflammation in the pathogenesis of unstable coronary artery diseases. Scand J Clin Lab Invest 59:12–22

    Article  Google Scholar 

  21. Turhan H, Erbay AR, Yasar AS, Balci M, Bicer A, Yetkin E (2004) Comparison of C-reactive protein levels in patients with coronary artery ectasia versus patients with obstructive coronary artery disease. Am J Cardiol 94:1303–1306

    Article  PubMed  CAS  Google Scholar 

  22. Finkelstein A, Michowitz Y, Abashidze A, Miller H, Keren G, George J (2005) Temporal association between circulating proteolytic, inflammatory and neurohormonal markers in patients with coronary ectasia. Atherosclerosis 179:353–359

    Article  PubMed  CAS  Google Scholar 

  23. Palomer X, Perez A, Blanco-Vaca F (2005) Adiponectin: a new link between obesity, insulin resistance and cardiovascular disease. Med Clin 124:388–395

    Article  Google Scholar 

  24. Jansson PA, Pellme F, Hammarstedt A, Sandqvist M, Brekke H, Caidahl K, Forsberg M, Volkmann R, Carvalho E, Funahashi T, Matsuzawa Y, Wiklund O, Yang X, Taskinen MR, Smith U (2003) A novel cellular marker of insulin resistance and early atherosclerosis in humans is related to impaired fat cell differentiation and low adiponectin. FASEB J 17:1434–1440

    Article  PubMed  CAS  Google Scholar 

  25. Fujii N, Tsuchihashi K, Sasao H, Eguchi M, Miurakami H, Hase M, Higashiura K, Yuda S, Hashimoto A, Miura T, Ura N, Shimamoto K (2008) Insulin resistance functionally limits endotheliumdependent coronary vasodilation in nondiabetic patients. Heart Vessels 23(1):9–15

    Article  PubMed  Google Scholar 

  26. Ikeda N, Nakajima R, Tsunoda T, Nakamura M, Sugi K (2007) Insulin resistance and acute coronary syndrome in the young Japanese population have a strong association. Heart Vessels 22: 165–169

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necati Dagli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dagli, N., Ozturk, U., Karaca, I. et al. Adiponectin levels in coronary artery ectasia. Heart Vessels 24, 84–89 (2009). https://doi.org/10.1007/s00380-008-1087-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-008-1087-0

Key words

Navigation