Skip to main content
Log in

Remarkable link between projected uncertainties of Arctic sea-ice decline and winter Eurasian climate

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

We identify that the projected uncertainty of the pan-Arctic sea-ice concentration (SIC) is strongly coupled with the Eurasian circulation in the boreal winter (December–March; DJFM), based on a singular value decomposition (SVD) analysis of the forced response of 11 CMIP5 models. In the models showing a stronger sea-ice decline, the Polar cell becomes weaker and there is an anomalous increase in the sea level pressure (SLP) along 60°N, including the Urals–Siberia region and the Iceland low region. There is an accompanying weakening of both the midlatitude westerly winds and the Ferrell cell, where the SVD signals are also related to anomalous sea surface temperature warming in the midlatitude North Atlantic. In the Mediterranean region, the anomalous circulation response shows a decreasing SLP and increasing precipitation. The anomalous SLP responses over the Euro-Atlantic region project on to the negative North Atlantic Oscillation–like pattern. Altogether, pan-Arctic SIC decline could strongly impact the winter Eurasian climate, but we should be cautious about the causality of their linkage.

摘要

本研究分析了CMIP5 11个模式对冬季(12月至翌年3月)北极海冰面积在本世纪末的预估的不确定性及其与欧亚环流的关系. 我们通过奇异值分解 (SVD)得出两者强耦合的主模态, 当中反映了北极海冰覆盖范围的预估. 当北极海冰范围减少的预估值比模式集合更大时, 极地环流相对更弱, 其南侧(约北纬60度)出现异常的下沉气流, 乌拉尔山至西伯利亚地区及冰岛一带的海平面气压相对更高. 与此同时, 中纬度的西风带和费雷尔环流 (Ferrell Cell) 相对更弱, 北大西洋海温相对更暖. 在地中海地区, 海平面气压相对偏低而降水相对较多. 此情形下北大西洋气压的差异类似北大西洋涛动的负位相. 总体而言, 北极海冰未来预估的不确定性或会影响到欧亚冬季气候的预估, 不过我们须谨慎分析它们的因果关系.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R. J., and C. S. Zender, 2011: Forcing of the Arctic Oscillation by Eurasian snow cover. J. Climate, 24, 6528–6539, https://doi.org/10.1175/2011JCLI4157.1.

    Article  Google Scholar 

  • Årthun, M., T. Eldevik, L. H. Smedsrud, Ø. Skagseth, and R. B. Ingvaldsen, 2012: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. J. Climate, 25, 4736–4743, https://doi.org/10.1175/JCLI-D-11-00466.1.

    Article  Google Scholar 

  • Ayarzagüena, B., and J. A. Screen, 2016: Future Arctic sea ice loss reduces severity of cold air outbreaks in midlatitudes. Geophys. Res. Lett., 43, 2801–2809, https://doi.org/10.1002/2016GL068092.

    Article  Google Scholar 

  • Barnes, E. A., and L. M. Polvani, 2015: CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J. Climate, 28, 5254–5271, https://doi.org/10.1175/JCLI-D-14-00589.1.

    Article  Google Scholar 

  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? WIREs Climate Change, 6, 277–286, https://doi.org/10.1002/wcc.337.

    Article  Google Scholar 

  • Bintanja, R., and F. M. Selten, 2014: Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature, 509, 479–482, https://doi.org/10.1038/nature13259.

    Article  Google Scholar 

  • Blackport, R., and P. J. Kushner, 2017: Isolating the atmospheric circulation response to Arctic sea ice loss in the coupled climate system. J. Climate, 30, 2163–2185, https://doi.org/10.1175/JCLI-D-16-0257.1.

    Article  Google Scholar 

  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541–560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    Article  Google Scholar 

  • Chang, C.-P., Z. Wang, and H. Hendon, 2006: The Asian winter monsoon. The Asian Monsoon, B. Wang, Ed., Springer, 89–127.

    Chapter  Google Scholar 

  • Chen, H.W., F. Q. Zhang, and R. B. Alley, 2016: The robustness of midlatitude weather pattern changes due to Arctic sea ice loss. J. Climate, 29, 7831–7849, https://doi.org/10.1175/JCLI-D-16-0167.1.

    Article  Google Scholar 

  • Cheng, W., J. C. H. Chiang, and D. X. Zhang, 2013: Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Climate, 26, 7187–7197, https://doi.org/10.1175/JCLI-D-12-00496.1.

    Article  Google Scholar 

  • Cohen, J. L., J. C. Furtado, M. A. Barlow, V. A. Alexeev, and J. E. Cherry, 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environmental Research Letters, 7, 014007, https://doi.org/10.1088/1748-9326/7/1/014007.

    Article  Google Scholar 

  • Cohen, J. L., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627–637, https://doi.org/10.1038/NGEO2234.

    Article  Google Scholar 

  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

    Google Scholar 

  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333–351, https://doi.org/10.1175/2009JCLI3053.1.

    Article  Google Scholar 

  • Deser, C., L. T. Sun, R. A. Tomas, and J. Screen, 2016: Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss? Geophys. Res. Lett., 43, 2149–2157, https://doi.org/10.1002/2016GL067792.

    Article  Google Scholar 

  • Ding, Q. H., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H.-J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209–212, https://doi.org/10.1038/nature13260.

    Article  Google Scholar 

  • Ding, Y. H., 1994: Monsoons over China. Kluwer Academic Publishers, 420 pp.

    Google Scholar 

  • Gao, Y. Q., and Coauthors, 2015: Arctic sea ice and Eurasian climate: A review. Adv. Atmos. Sci., 32, 92–114, https://doi.org/10.1007/s003946-014-0009-6.

    Article  Google Scholar 

  • Graversen, R. G., T. Mauritsen, M. Tjernström, E. Källén, and G. Svensson, 2008: Vertical structure of recent Arctic warming. Nature, 451, 53–56, https://doi.org/10.1038/nature06502.

    Article  Google Scholar 

  • Harvey, B. J., L. C. Shaffrey, and T. J. Woollings, 2015: Deconstructing the climate change response of the Northern Hemisphere wintertime storm tracks. Climate Dyn., 45, 2847–2860, https://doi.org/10.1007/s00382-015-2510-8.

    Article  Google Scholar 

  • Hodson, D. L. R., S. P. E. Keeley, A. West, J. Ridley, E. Hawkins, and H. T. Hewitt, 2013: Identifying uncertainties in Arctic climate change projections. Climate Dyn., 40, 2849–2865, https://doi.org/10.1007/s00382-012-1512-z.

    Article  Google Scholar 

  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008GL037079.

    Article  Google Scholar 

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    Article  Google Scholar 

  • Jaiser, R., K. Dethloff, D. Handorf, A. Rinke, and J. Cohen, 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A, 64, 11595, https://doi.org/10.3402/tellusa.v64i0.11595.

    Article  Google Scholar 

  • Jung, O., M.-K. Sung, K. Sato, Y.-K. Lim, S.-J. Kim, E.-H. Baek, and B.-M. Kim, 2017: How does the SST variability over the western North Atlantic Ocean control Arctic warming over the Barents-Kara Seas? Environmental Research Letters, 12, 034021, https://doi.org/10.1088/1748-9326/aa5f3b.

    Article  Google Scholar 

  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 3521–3532, https://doi.org/10.1175/2007JCLI2146.1.

    Article  Google Scholar 

  • Kim, B.-M., and Coauthors, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature Communications, 5, 4646, https://doi.org/10.1038/ncomms5646.

    Article  Google Scholar 

  • King, M. P., M. Hell, and N. Keenlyside, 2016: Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the Northern Hemisphere. Climate Dyn., 46, 1185–1195, https://doi.org/10.1007/s00382-015-2639-5.

    Article  Google Scholar 

  • Kug, J.-S., J.-H. Jeong, Y.-S. Jang, B.-M. Kim, C. K. Folland, S.-K. Min, and S.-W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geoscience, 8, 759–762, https://doi.org/10.1038/ngeo2517.

    Article  Google Scholar 

  • Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Climate, 17, 857–876, https://doi.org/10.1175/1520-0442(2004)017<0857:TEONAS>2.0.CO;2.

    Article  Google Scholar 

  • Mahlstein, I., and R. Knutti, 2011: Ocean heat transport as a cause for model uncertainty in projected Arctic warming. J. Climate, 24, 1451–1460, https://doi.org/10.1175/2010JCLI3713.1.

    Article  Google Scholar 

  • Manzini, E., and Coauthors, 2014: Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere coupling. J. Geophys. Res., 119, 7979–7998, https://doi.org/10.1002/2013JD021403.

    Article  Google Scholar 

  • McCusker, K. E., J. C. Fyfe, and M. Sigmond, 2016: Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nature Geoscience, 9, 838–843, https://doi.org/10.1038/ngeo2820.

    Article  Google Scholar 

  • Meleshko, V. P., O. M. Johannessen, A. V. Baidin, T. V. Pavlova, and V. A. Govorkova, 2016: Arctic amplification: Does it impact the polar jet stream? Tellus A, 68, 32330, https://doi.org/10.3402/tellusa.v68.32330.

    Article  Google Scholar 

  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7, 869–873, https://doi.org/10.1038/ngeo2277.

    Article  Google Scholar 

  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res., 120, 3209–3227, https://doi.org/10.1002/2014JD022848.

    Article  Google Scholar 

  • Nummelin, A., C. Li, and P. J. Hezel, 2017: Connecting ocean heat transport changes from the midlatitudes to the Arctic Ocean. Geophys. Res. Lett., 44, 1899–1908, https://doi.org/10.1002/2016GL071333.

    Google Scholar 

  • Omrani, N.-E., J. Bader, N. S. Keenlyside, and E. Manzini, 2016: Troposphere-stratosphere response to large-scale North Atlantic Ocean variability in an atmosphere/ocean coupled model. Climate Dyn., 46, 1397–1415, https://doi.org/10.1007/s00382-015-2654-6.

    Article  Google Scholar 

  • Omrani, N.-E., N. S. Keenlyside, J. Bader, and E. Manzini, 2014: Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Climate Dyn., 42, 649–663, https://doi.org/10.1007/S00382-013-1860-3.

    Article  Google Scholar 

  • Overland, J. E., and M. Y. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A, 62, 1–9, https://doi.org/10.1111/j.1600-0870.2009.00421.x.

    Article  Google Scholar 

  • Overland, J., J. A. Francis, R. Hall, E. Hanna, S.-J. Kim, and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: Are they connected? J. Climate, 28, 7917–7932, https://doi.org/10.1175/JCLI-D-14-00822.1.

    Article  Google Scholar 

  • Panagiotopoulos, F., M. Shahgedanova, A. Hannachi, and D. B. Stephenson, 2005: Observed trends and teleconnections of the Siberian high: A recently declining center of action. J. Climate, 18, 1411–1422, https://doi.org/10.1175/JCLI3352.1.

    Article  Google Scholar 

  • Peings, Y., and G. Magnusdottir, 2014: Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J. Climate, 27, 244–264, https://doi.org/10.1175/JCLI-D-13-00272.1.

    Article  Google Scholar 

  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, https://doi.org/10.1029/2009JD013568.

    Article  Google Scholar 

  • Reintges, A., T. Martin, M. Latif, and N. S. Keenlyside, 2017: Uncertainty in twenty-first century projections of the Atlantic Meridional Overturning Circulation in CMIP3 and CMIP5 models. Climate Dyn., 49, 1495–1511, https://doi.org/10.1007/s00382-016-3180-x.

    Article  Google Scholar 

  • Sato, K., J. Inoue, and M. Watanabe, 2014: Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environmental Research Letters, 9, 084009, https://doi.org/10.1088/1748-9326/9/8/084009.

    Article  Google Scholar 

  • Rogers, J. C., 1997: North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability of Northern Europe. J. Climate, 10, 1635–1647, https://doi.org/10.1175/1520-0442(1997)010<1635:NASTVA>2.0.CO;2.

    Article  Google Scholar 

  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Clim. Change, 4, 577–582, https://doi.org/10.1038/nclimate2268.

    Article  Google Scholar 

  • Screen, J. A., 2017: Simulated atmospheric response to regional and pan-Arctic sea ice loss. J. Climate, 30, 3945–3962, https://doi.org/10.1175/JCLI-D-16-0197.1.

    Article  Google Scholar 

  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334–1337, https://doi.org/10.1038/nature09051.

    Article  Google Scholar 

  • Screen, J. A., and J. A. Francis, 2016: Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat. Clim. Change, 6, 856–860, https://doi.org/10.1038/nclimate3011.

    Article  Google Scholar 

  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nature Geoscience, 1, 21–24, https://doi.org/10.1038/ngeo.2007.38.

    Article  Google Scholar 

  • Sokolova, E., K. Dethloff, A. Rinke, and A. Benkel, 2007: Planetary and synoptic scale adjustment of the Arctic atmosphere to sea ice cover changes. Geophys. Res. Lett., 34, L17816, https://doi.org/10.1029/2007GL030218.

    Article  Google Scholar 

  • Sorokina, S. A., C. Li, J. J. Wettstein, and N. G. Kvamstø, 2016: Observed atmospheric coupling between Barents sea ice and the warm-Arctic cold-Siberian anomaly pattern. J. Climate, 29, 495–511, https://doi.org/10.1175/JCLI-D-15-0046.1.

    Article  Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature field. Geophys. Res. Lett., 25, 1297–1300, https://doi.org/10.1029/98GL00950.

    Article  Google Scholar 

  • Tokinaga, H., S.-P. Xie, and H. Mukougawa, 2017: Early 20thcentury Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc. Nat. Acad. Sci, 114, 6227–6232, https://doi.org/10.1073/pnas.1615880114.

    Article  Google Scholar 

  • Trenberth, K. E., J. T. Fasullo, G. Branstator, and A. S. Phillips, 2014: Seasonal aspects of the recent pause in surface warming. Nat. Clim. Change, 4, 911–916, https://doi.org/10.1038/nclimate2341.

    Article  Google Scholar 

  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surveys in Geophysics, 35, 1175–1214, https://doi.org/10.1007/s10712-014-92824-0.

    Article  Google Scholar 

  • Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561–576, https://doi.org/10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2.

    Article  Google Scholar 

  • Wang, C. Z., L. P. Zhang, S.-K. Lee, L. X. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Clim. Change, 4, 201–205, https://doi.org/10.1038/NCLIMATE2118.

    Article  Google Scholar 

  • Wang, M. Y., and J. E. Overland, 2012: A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophys. Res. Lett., 39, L18501, https://doi.org/10.1029/2012GL052868.

    Google Scholar 

  • Woollings, T., J. M. Gregory, J. G. Pinto, M. Reyers, and D. J. Brayshaw, 2012: Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. Nature Geoscience, 5, 313–317, https://doi.org/10.1038/ngeo1438.

    Article  Google Scholar 

  • Yang, S. T., and J. H. Christensen, 2012: Arctic sea ice reduction and European cold winters in CMIP5 climate change experiments. Geophys. Res. Lett., 39, L20707, https://doi.org/10.1029/2012GL053338.

    Google Scholar 

  • Zhang, P. F., Y. T. Wu, and K. L. Smith, 2017: Prolonged effect of the stratospheric pathway in linking Barents-Kara Sea sea ice variability to the midlatitude circulation in a simplified model. Climate Dyn., https://doi.org/10.1007/s00382-017-3624-y. (in press)

    Google Scholar 

Download references

Acknowledgements

The work of HC, NK and NO was supported by grants from the European Research Council (ERC) project (Grant No. 648982) and NordForsk under the GREENICE (Grant No. 61841) and ARCPATH (Grant No. 76654) projects, and the work of WZ was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (CityU 11335316 and 11305715). The authors also benefit from high performance computing grants (NOTUR2, project no. NN 9390K; NORSTORE, NS9064K). The authors acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. We also greatly appreciate the valuable comments given by the two anonymous reviewers, which helped improve the clarity of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoffman H. N. Cheung.

Additional information

This article is published with open access at link.springer.com

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, H.H.N., Keenlyside, N., Omrani, NE. et al. Remarkable link between projected uncertainties of Arctic sea-ice decline and winter Eurasian climate. Adv. Atmos. Sci. 35, 38–51 (2018). https://doi.org/10.1007/s00376-017-7156-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7156-5

Key words

关键词

Navigation