Skip to main content
Log in

Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat (SH) over the central and eastern Tibetan Plateau (CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH. During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature. Cloud–radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.

摘要

本文利用常规地面气象观测资料及NCEP/DOE再分析数据集, 探讨了青藏高原中东部地区地表感热在全球变暖停滞期的演变. 结果表明: 高原中东部地区自1980年代后持续减弱的地表感热在全球变暖停滞期有所恢复; 高原感热的这一变化主要由地表风速的减弱停滞及地气温差的增加导致; 在全球变暖停滞期, 一方面, 东亚中高纬地区经向温度梯度的改变使前期持续减弱的高原地表风速有所恢复, 另一方面, 夜间总云量的增加通过加强大气逆辐射, 减弱地面有效辐射, 进而导致地温及地气温差的显著增加. 全球变暖停滞期云-辐射反馈效应在高原温度乃至感热的变化中具有重要的作用, 该期间地气温差(尤其是夜间的地气温差)的变化是除地表风速以外影响高原感热变化的另一重要因素.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berthier, E., and T. Toutin, 2008: SPOT5-HRS digital elevation models and the monitoring of glacier elevation changes in North-West Canada and South-East Alaska. Remote Sensing of Environment, 112(5), 2443–2454, doi: 10.1016/j.rse.2007.11.004.

    Article  Google Scholar 

  • Chen, B., W. C. Chao, and X. Liu, 2003: Enhanced climatic warming in the Tibetan Plateau due to doubling CO2: A model study. Climate Dyn., 20(4), 401–413, doi: 10.1007/s00382-002-0282-4.

    Google Scholar 

  • Chen, J. H., X. Q. Wu, Y. Yin, and H. Xiao, 2015: Characteristics of heat sources and clouds over eastern China and the Tibetan Plateau in boreal summer. J. Climate, 28, 7279–7296, doi: 10.1175/JCLI-D-14-00859.1.

    Article  Google Scholar 

  • Chen, L. X., E. R. Reiter, and Z. Q. Feng, 1985: The atmospheric heat source over the Tibetan Plateau: May–August 1979. Mon. Wea. Rev., 113, 1771–1790, doi: 10.1175/1520-0493(1985)113<1771:TAHSOT>2.0.CO;2.

    Article  Google Scholar 

  • Dai, A. G., J. C. Fyfe, S. P. Xie, and X. G. Dai, 2015: Decadal modulation of global surface temperature by internal climate variability. Nature Climate Change, 5, 555–559, doi: 10.1038/nclimate2605.

    Article  Google Scholar 

  • Duan, A. M., and G. X. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24, 793–807, doi: 10.1007/s00382-004-0488-8.

    Article  Google Scholar 

  • Duan, A. M., and G. X. Wu, 2006: Change of cloud amount and the climate warming on the Tibetan Plateau. Geophys. Res. Lett., 33(22), L22704, doi: 10.1029/2006GL027946.

    Article  Google Scholar 

  • Duan, A. M., and Z. X. Xiao, 2015: Does the climate warming hiatus exist over the Tibetan Plateau? Scientific Reports, 5, 13711, doi: 10.1038/srep13711.

    Article  Google Scholar 

  • Duan, A. M., and G. X. Wu, 2008: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations. J. Climate, 21, 3149–3164, doi: 10.1175/2007JCLI1912.1.

    Google Scholar 

  • Duan, A. M., and G. X. Wu, 2009: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part II: Connection with climate warming. J. Climate, 22, 4197–4212, doi: 10.1175/2009JCLI2699.1.

    Google Scholar 

  • Duan, A. M., G. X. Wu, Q. Zhang, and Y. M. Liu, 2006: New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Chinese Science Bulletin, 51, 1396–1400, doi: 10.1007/s11434-006-1396-6.

    Article  Google Scholar 

  • Duan, A. M., F. Li, M. R. Wang, and G. X. Wu, 2011: Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon. J. Climate, 24, 5671–5682, doi: 10.1175/JCLI-D-11-00052.1.

    Article  Google Scholar 

  • Duan, A. M., G. X. Wu, Y. M. Liu, Y. M. Ma, and P. Zhao, 2012: Weather and climate effects of the Tibetan Plateau. Adv. Atmos. Sci., 29(5), 978–992, doi: 10.1007/s00376-012-1220-y.

    Article  Google Scholar 

  • Duan, A. M., M. R. Wang, Y. H. Lei, and Y. F. Cui, 2013: Trends in Summer Rainfall over China Associated with the Tibetan Plateau Sensible Heat Source during 1980-2008. J. Climate, 26, 261–275, doi: 10.1175/JCLI-D-11-00669.1.

    Article  Google Scholar 

  • Easterling, D. R., and M. F. Wehner, 2009: Is the climate warming or cooling? Geophys. Res. Lett., 36, L08706, doi: 10.1029/2009GL037810.

    Article  Google Scholar 

  • Easterling, D. R., and Coauthors, 1997: Maximum and minimum temperature trends for the globe. Science, 277, 364–367, doi: 10.1126/science.277.5324.364.

    Article  Google Scholar 

  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4, 222–227, doi: 10.1038/nclimate2106.

    Article  Google Scholar 

  • Fyfe, J. C., K. von Salzen, J. N. S. Cole, N. P. Gillett, and J.-P. Vernier, 2013a: Surface response to stratospheric aerosol changes in a coupled atmosphere-ocean model. Geophys. Res. Lett., 40, 584–588, doi: 10.1002/grl.50156.

    Article  Google Scholar 

  • Fyfe, J. C., N. P. Gillett, and F. W. Zwiers, 2013b: Overestimated global warming over the past 20 years. Nature Climate Change, 3, 767–769, doi: 10.1038/nclimate1972.

    Article  Google Scholar 

  • Giorgi, F., J. W. Hurrell, M. R. Marinucci, and M. Beniston, 1997: Elevation dependency of the surface climate change signal: A model study. J. Climate, 10(2), 288–296, doi: 10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2.

    Article  Google Scholar 

  • Guo, X. F., K. Yang, and Y. Y. Chen, 2011: Weakening sensible heat source over the Tibetan Plateau revisited: effects of the land–atmosphere thermal coupling. Theor. Appl. Climatol., 104(1–2), 1–12, doi: 10.1007/s00704-010-0328-1.

    Article  Google Scholar 

  • Hu, J., and A. M. Duan, 2015: Relative contributions of the Tibetan Plateau thermal forcing and the Indian Ocean Sea surface temperature basin mode to the interannual variability of the East Asian summer monsoon. Climate Dyn., 45, 2697–2711, doi: 10.1007/s00382-015-2503-7.

    Article  Google Scholar 

  • Karl, T. R., G. Kukla, V. N. Razuvayev, M. J. Changery, R. G. Quayle, R. R. Heim Jr., D. R. Easterling, and C. B. Fu, 1991: Global warming: Evidence for asymmetric diurnal temperature change. Geophys. Res. Lett., 18, 2253–2256, doi: 10.1029/91GL02900.

    Article  Google Scholar 

  • Karl, T. R., and Coauthors, 1993: A new perspective on recent global warming: Asymmetric trends of daily maximum and minimum temperature. Bull. Amer. Meteor. Soc., 74, 1007–1023, doi: 10.1175/1520-0477(1993)074<1007:ANPORG>2.0.CO;2.

    Article  Google Scholar 

  • Kosaka, Y., and S. P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407, doi: 10.1038/nature12534.

    Article  Google Scholar 

  • Li, C. F., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast. J. Climate, 9, 358–375, doi: 10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2.

    Article  Google Scholar 

  • Li, W. P., G. X. Wu, Y. M. Liu, and X. Liu, 2001: How the surface processes over the Tibetan Plateau affect the summertime Tibetan Anticyclone-numerical experiments. Chinese Journal of Atmospheric Sciences, 25, 809–816, doi: 10.3878/j.issn.1006-9895.2001.06.08. (in Chinese with English abstract)

    Google Scholar 

  • Lin, C. G., K. Yang, J. Qin, and R. Fu, 2013: Observed coherent trends of surface and upper-air wind speed over China since 1960. J. Climate, 26(9), 2891–2903, doi: 10.1175/JCLI-D-12-00093.1.

    Article  Google Scholar 

  • Liu, X. D., Z. G. Cheng, L. B. Yan, and Z. Y. Yin, 2009: Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global and Planetary Change, 68(3), 164–174, doi: 10.1016/j.gloplacha.2009.03.017.

    Article  Google Scholar 

  • Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. X. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Climate Change, 1, 360–364, doi: 10.1038/nclimate1229.

    Article  Google Scholar 

  • Rangwala, I., E. Sinsky, and J. R. Miller, 2013: Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models. Environmental Research Letters, 8, 024040, doi: 10.1088/1748-9326/8/2/024040.

    Article  Google Scholar 

  • Santer, B. D., and Coauthors, 2011: Separating signal and noise in atmospheric temperature changes: The importance of timescale. J. Geophy. Res., 116, D22105, doi: 10.1029/2011 JD016263.

    Article  Google Scholar 

  • Santer, B. D., and Coauthors, 2013: Identifying human influences on atmospheric temperature. Proceedings of the National Academy of Sciences of the United States of America, 110, 26–33, doi: 10.1073/pnas.1210514109.

    Article  Google Scholar 

  • Santer, B. D., and Coauthors, 2014: Volcanic contribution to decadal changes in tropospheric temperature. Nature Geoscience, 7, 185–189, doi: 10.1038/ngeo2098.

    Article  Google Scholar 

  • Schmidt, G. A., D. T. Shindell, and K. Tsigaridis, 2014: Reconciling warming trends. Nature Geoscience, 7, 158–160, doi: 10.1038/ngeo2105.

    Article  Google Scholar 

  • Solomon, S., J. S. Daniell, R. R. Neely III, J.-P. Vernier, E. G. Dutton, and L. W. Thomason, 2011: The persistently variable “background” stratospheric aerosol layer and global climate change. Science, 333, 866–870, doi: 10.1126/science.1206027.

    Article  Google Scholar 

  • Trenberth, K. E., 2015: Has there been a hiatus? Science, 349, 691–692, doi: 10.1126/science.aac9225.

    Article  Google Scholar 

  • Wei, F. Y., 1999: Technology of Statistical Diagnosis and Prediction of Modern Climate. China Meteorological Press, Beijing, 296 pp. (in Chinese)

    Google Scholar 

  • Wu, G. X., W.P. Li, H. Guo, 1997: Sensible heat driven air-pump over the Tibetan-Plateau and its impacts on the Asian Summer Monsoon. In: Ye DZ (ed) Collections on the Memory of Zhao Jiuzhang.Science Press, Beijing, pp 116–126.(in Chinese)

  • Wu, G. X., Y. M. Liu, J. Y. Mao, X. Liu, and W. P. Li, 2004: Adaptation of the atmospheric circulation to thermal forcing over the Tibetan Plateau. Observation, Theory and Modeling of Atmospheric Variability. Selected Papers of Nanjing Institute of Meteorology Alumni in Commemoration for Professor Jijia Zhang, X. Zhu, X. F. Li, and S. T. Zhou, Eds., World Scientific, 92–114, doi: 10.1142/9789812791139_0004.

    Chapter  Google Scholar 

  • Wu, G. X., Y. M. Liu, B. He, Q. Bao, A. M. Duan, and F. F. Jin, 2012: Thermal controls on the Asian summer monsoon. Scientific Reports, 2, 404, doi: 10.1038/srep00404.

    Article  Google Scholar 

  • Yanai, M., C. F. Li, and Z. S. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319–351, doi: 10.2151/jmsj1965.70.1B 319.

    Article  Google Scholar 

  • Yang, K., X. F. Guo, He J., J. Qin, and T. Koike, 2011a: On the climatology and trend of the atmospheric heat source over the Tibetan Plateau: An experiments-supported revisit. J. Climate, 24, 1525–1541, doi: 10.1175/2010JCLI3848.1.

    Article  Google Scholar 

  • Yang, K., X. F. Guo, and B. Y. Wu, 2011b: Recent trends in surface sensible heat flux on the Tibetan Plateau. Science China Earth Sciences, 54, 19–28, doi: 10.1007/s11430-010-4036-6.

    Article  Google Scholar 

  • Yang, K., B. H. Ding, J. Qin, W. J. Tang, N. Lu, and C. G. Lin, 2012: Can aerosol loading explain the solar dimming over the Tibetan Plateau? Geophys. Res. Lett., 39, L20710, doi: 10.1029/2012GL053733.

    Google Scholar 

  • Ye, D. Z., and G. X. Wu, 1998: The role of the heat source of the Tibetan Plateau in the general circulation. Meteor. Atmos. Phys., 67(1–4), 181–198, doi: 10.1007/BF01277509.

    Article  Google Scholar 

  • Yeh, T. C., and Y. X. Gao, 1979: Qinghai-Xizang Plateau Meteorology. Science Press, Beijing, 1–278. (in Chinese)

    Google Scholar 

  • Yeh, T. C., S. W. Lo, and P. C. Chu, 1957: The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding. Acta Meteorologica Sinica, 28, 108–121, doi: 10.11676/qxxb1957.010. (in Chinese with English abstract)

    Google Scholar 

  • Yeh, T. C., S. Y. Dao, and M. T. Li, 1958: The abrupt change of circulation over northern hemisphere during June and October. Acta Meteorologica Sinica, 29, 249–263. (in Chinese with English abstract)

    Google Scholar 

  • You, Q. L., J. Z. Min, and S. C. Kang, 2016: Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. International Journal of Climatology, 36, 2660–2670., doi: 10.1002/joc.4520.

    Article  Google Scholar 

  • Zhang, X. Q., Y. Ren, Z.-Y. Yin, Z. Y. Lin, and D. Zheng, 2009: Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971–2004. J. Geophys. Res., 114, D15105, doi: 10.1029/2009JD011753.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the great founder of TP meteorology, Duzheng YE. The authors thank the CMA for kindly providing the observational data. We also thank the two anonymous reviewers and editor for their useful comments. This work was supported by the National Natural Science Foundation of China (41425019, 41661144016, 91537214) and the Public Science and Technology Research Funds Projects of the Ocean (201505013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Huang, G., Fan, G. et al. Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus. Adv. Atmos. Sci. 34, 1249–1262 (2017). https://doi.org/10.1007/s00376-017-6298-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-6298-9

Keywords

关键词

Navigation