Skip to main content
Log in

Simulations of Eurasian winter temperature trends in coupled and uncoupled CFSv2

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Conflicting results have been presented regarding the link between Arctic sea-ice loss and midlatitude cooling, particularly over Eurasia. This study analyzes uncoupled (atmosphere-only) and coupled (ocean–atmosphere) simulations by the Climate Forecast System, version 2 (CFSv2), to examine this linkage during the Northern Hemisphere winter, focusing on the simulation of the observed surface cooling trend over Eurasia during the last three decades. The uncoupled simulations are Atmospheric Model Intercomparison Project (AMIP) runs forced with mean seasonal cycles of sea surface temperature (SST) and sea ice, using combinations of SST and sea ice from different time periods to assess the role that each plays individually, and to assess the role of atmospheric internal variability. Coupled runs are used to further investigate the role of internal variability via the analysis of initialized predictions and the evolution of the forecast with lead time.

The AMIP simulations show a mean warming response over Eurasia due to SST changes, but little response to changes in sea ice. Individual runs simulate cooler periods over Eurasia, and this is shown to be concurrent with a stronger Siberian high and warming over Greenland. No substantial differences in the variability of Eurasian surface temperatures are found between the different model configurations. In the coupled runs, the region of significant warming over Eurasia is small at short leads, but increases at longer leads. It is concluded that, although the models have some capability in highlighting the temperature variability over Eurasia, the observed cooling may still be a consequence of internal variability.

摘要

针对北极海冰减少和中纬度地区特别是欧亚地区的变冷之间关系的研究, 存在一些争议或者相冲突的结果. 本文利用CFSv2系统的非耦合大气模式(AMIP)和海洋-大气耦合模式模拟, 来检验北半球冬季的这种关联, 重点是模拟过去30年观测到的欧亚地区的地表变冷趋势. 首先利用非耦合的大气模式并以季节循环的海温(SST)和海冰密集度(SIC)作为强迫场驱动, 选取不同时期的平均SST和SIC, 并通过SST和SIC之间的多种组合强迫, 分析强迫场及大气内部变化的影响. 进一步利用海洋-大气耦合模式, 通过初始化预测及提前预报的演变, 分析大气内部变化的作用.

AMIP模拟结果显示, 由于海温变化, 欧亚地区平均增暖, 但欧亚气温对海冰变化几乎没有响应. 个别试验模拟出了较低的欧亚气温, 同时出现的是较强的西伯利亚高压和格陵兰岛的增暖. 不同的模式配置(即不同的海温海冰强迫组合)并不会造成欧亚表面温度变化的明显差异. 耦合试验结果显示, 短期预测试验模拟的欧亚显著增暖区域很小, 但随着预报时段的增长, 更多的欧亚区域变暖. 因此, 尽管模式具有突出欧亚大陆温度变化的能力, 但观测到的地表变冷仍可能是大气内部变率的结果.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. A., U. S. Bhatt, J. E. Walsh, M. S. Timlin, J. S. Miller, and J. D. Scott, 2004: The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Climate, 17, 890–905, https://doi.org/10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2.

    Article  Google Scholar 

  • Ayarzagüena, B., and J. A. Screen, 2016: Future Arctic sea ice loss reduces severity of cold air outbreaks in midlatitudes. Geophys. Res. Lett., 43, 2801–2809, https://doi.org/10.1002/2016GL068092.

    Article  Google Scholar 

  • Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 40, 4734–4739, https://doi.org/10.1002/grl.50880.

    Article  Google Scholar 

  • Barnes, E. A., E. Dunn-Sigouin, G. Masato, and T. Woollings, 2014: Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett., 41, 638–644, https://doi.org/10.1002/2013GL058745.

    Article  Google Scholar 

  • Chen, M.Y., W. Q. Wang, and A. Kumar, 2013: Lagged ensembles, forecast configuration, and seasonal predictions. Mon. Wea. Rev., 141, 3477–3497, https://doi.org/10.1175/MWRD-12-00184.1.

    Article  Google Scholar 

  • Cohen, J. L., J. C. Furtado, M. Barlow, V. A. Alexeev, and J. E. Cherry, 2012: Asymmetric seasonal temperature trends. Geophys. Res. Lett., 39, L04705, https://doi.org/10.1029/2011GL050582.

    Google Scholar 

  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627–637, https://doi.org/10.1038/NGEO2234.

    Article  Google Scholar 

  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the arctic sea ice cover. Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828.

    Article  Google Scholar 

  • Deser, C., G. Magnusdottir, R. Saravanan, and A. Phillips, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate, 17, 877–889, https://doi.org/10.1175/1520-0442(2004)017<0877:TEONAS>2.0.CO;2.

    Article  Google Scholar 

  • Ding, Q. H., and Coauthors, 2017: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Clim. Change, 7, 289–295, https://doi.org/10.1038/nclimate3241.

    Article  Google Scholar 

  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.

    Article  Google Scholar 

  • Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters, 10, 014005, https://doi.org/10.1088/1748-9326/10/1/014005.

    Article  Google Scholar 

  • Furtado, J. C., J. L. Cohen, A. H. Butler, E. E. Riddle and A. Kumar, 2015: Eurasian snow cover variability and links to winter climate in the CMIP5 models. Climate Dyn., 45, 2591–2605, https://doi.org/10.1007/s00382-015-2494-4.

    Article  Google Scholar 

  • Gao, Y. Q., and Coauthors, 2015: Arctic sea ice and Eurasian climate: A review. Adv. Atmos. Sci., 32, 92–114, https://doi.org/10.1007/s00376-014-0009-6.

    Article  Google Scholar 

  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2003: Technical guide to MOM4. GFDL Ocean Group Technical Report No. 5, NOAA/Geophysical Fluid Dynamics Laboratory, 337 pp. [Available online at www.gfdl.noaa.gov/~fms.]

    Google Scholar 

  • Handorf, D., R. Jaiser, K. Dethloff, A. Rinke, and J. Cohen, 2015: Impacts of Arctic sea ice and continental snow cover changes on atmospheric winter teleconnections. Geophys. Res. Lett., 42, 2367–2377, https://doi.org/10.1002/2015GL063203.

    Article  Google Scholar 

  • Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and Surface. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA, 159–254.

    Google Scholar 

  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008GL037079.

    Article  Google Scholar 

  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J. Climate, 21, 5145–5153, https://doi.org/10.1175/2008JCLI2292.1.

    Article  Google Scholar 

  • Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-arctic cold-Siberian anomaly. J. Climate, 25, 2561–2568, https://doi.org/10.1175/JCLI-D-11-00449.1.

    Article  Google Scholar 

  • Johansson, A., 2007: Prediction skill of the NAO and PNA from daily to seasonal time scales. J. Climate, 20, 1957–1975, https://doi.org/10.1175/JCLI4072.1.

    Article  Google Scholar 

  • Kumar, A., and Coauthors, 2010: Contribution of sea ice loss to Arctic amplification. Geophys. Res. Lett., 37, L21701, https://doi.org/10.1029/2010GL045022.

    Google Scholar 

  • Liu, J. P., J. A. Curry, H. J. Wang, M. R. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 4074–4079, https://doi.org/10.1073/pnas.1114910109.

    Article  Google Scholar 

  • McCusker, K. E., J. C. Fyfe, and M. Sigmond, 2016: Twentyfive winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nature Geoscience, 9, 838–842, https://doi.org/10.1038/NGEO2820.

    Article  Google Scholar 

  • Moorthi, S., H.-L. Pan, and P. Caplan, 2001: Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. NOAA Technical Bulletin No. 484, National Centers for Environmental Prediction, Washington, DC, 14 pp.

    Google Scholar 

  • Mori, M., M. Wananabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7, 869–873, https://doi.org/10.1038/NGEO2277.

    Article  Google Scholar 

  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res., 120, 3209–3227, https://doi.org/10.1002/2014JD022848.

    Article  Google Scholar 

  • Overland, J. E., J. A. Francis, R. Hall, E. Hanna, S.-J. Kim, and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: are they connected? J. Climate, 28, 7917–7932, https://doi.org/10.1175/JCLI-D-14-00822.1.

    Article  Google Scholar 

  • Overland, J. E., 2016: A difficult Arctic science issue: Midlatitude weather linkages. Polar Science, 10, 210–216, https://doi.org/10.1016/j.polar.2016.04.011.

    Article  Google Scholar 

  • Perlwitz, J., M. Hoerling, and R. Dole, 2015: Arctic tropospheric warming: causes and linkages to lower latitudes. J. Climate, 28, 2154–2167, https://doi.org/10.1175/JCLI-D-14-00095.1.

    Article  Google Scholar 

  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, https://doi.org/10.1029/2009JD013568.

    Article  Google Scholar 

  • Riddle, E. E., A. H. Butler, J. C. Furtado, J. L. Cohen, and A. Kumar, 2013: CFSv2 ensemble prediction of the wintertime Arctic Oscillation. Climate Dyn., 41, 1099–1116, https://doi.org/10.1007/s00382-013-1850-5.

    Article  Google Scholar 

  • Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057, https://doi.org/10.1175/2010BAMS3001.1.

    Article  Google Scholar 

  • Saha, S., and Coauthors, 2014: The NCEP climate forecast system version 2. J. Climate, 27, 2185–2208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    Article  Google Scholar 

  • Sato, K., J. Inoue, and M. Watanabe, 2014: Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environmental Research Letters, 9, 084009, https://doi.org/10.1088/1748-9326/9/8/084009.

    Article  Google Scholar 

  • Screen, J. A., C. Deser, and I. Simmonds, 2012: Local and remote controls on observed Arctic warming. Geophys. Res. Lett., 39, L10709, https://doi.org/10.1029/2012GL051598.

    Article  Google Scholar 

  • Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333–344, https://doi.org/10.1007/s00382-013-1830.9.

    Article  Google Scholar 

  • Screen, J. A., and I. Simmonds, 2013: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959–964, https://doi.org/10.1002/GRL.50174.

    Article  Google Scholar 

  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Clim. Change, 4, 577–582, https://doi.org/10.1038/NCLIMATE2268.

    Article  Google Scholar 

  • Screen, J. A., C. Deser, and L. T. Sun, 2015: Reduced risk of North American cold extremes due to continued Arctic sea ice loss. Bull. Amer. Meteor. Soc., 96, 1489–1503, https://doi.org/10.1175/BAMS-D-14-00185.1.

    Article  Google Scholar 

  • Serreze, M. C., M. M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 1533–1536, https://doi.org/10.1126/science.1139426.

    Article  Google Scholar 

  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004.

    Article  Google Scholar 

  • Sillmann, J., M. G. Donat, J. C. Fyfe, and F.W, Zwiers, 2014: Observed and simulated temperature extremes during the recent warming hiatus. Environmental Research Letters, 9, 064023, https://doi.org/10.1088/1748-9326/9/6/064023.

    Article  Google Scholar 

  • Sun, L. T., J. Perlwitz, and M. Hoerling, 2016: What caused the recent “Warm Arctic, Cold Continents” trend pattern in winter temperatures? Geophys. Res. Lett., 43, 5345–5352, https://doi.org/10.1002/2016GL069024.

    Article  Google Scholar 

  • Tang, Q. H., X. J. Zhang, X. H. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to arctic sea ice loss. Environmental Research Letters, 8, 014036, https://doi.org/10.1088/1748-9326/8/1/014036.

    Article  Google Scholar 

  • Wallace, J. M., I. M. Held, D. W. J. Thompson, K. E. Trenberth, and J. E. Walsh, 2014: Global warming and winter weather. Science, 343, 729–730, https://doi.org/10.1126/science/343/6172.729.

    Article  Google Scholar 

  • Zhang, X. D., C. H. Lu, and Z. Y. Guan, 2012: Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia. Environmental Research Letters, 7, 044044, https://doi.org/10.1088/1748-9326/7/4/044044.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the NOAA Climate Program Office Climate Variability and Predictability Program. We thank Qin ZHANG (CPC), Kirstin HARNOS (INNOVIM/ CPC), and the two anonymous reviewers for their assessment of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Collow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collow, T.W., Wang, W. & Kumar, A. Simulations of Eurasian winter temperature trends in coupled and uncoupled CFSv2. Adv. Atmos. Sci. 35, 14–26 (2018). https://doi.org/10.1007/s00376-017-6294-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-6294-0

Key words

关键词

Navigation