Skip to main content
Log in

Airborne observations of cloud condensation nuclei spectra and aerosols over East Inner Mongolia

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A set of vertical profiles of aerosol number concentrations, size distributions and cloud condensation nuclei (CCN) spectra was observed using a passive cloud and aerosol spectrometer (PCASP) and cloud condensation nuclei counter, over the Tongliao area, East Inner Mongolia, China. The results showed that the average aerosol number concentration in this region was much lower than that in heavily polluted areas. Monthly average aerosol number concentrations within the boundary layer reached a maximum in May and a minimum in September, and the variations in CCN number concentrations at different supersaturations showed the same trend. The parameters c and k of the empirical function N = cS k were 539 and 1.477 under clean conditions, and their counterparts under polluted conditions were 1615 and 1.42. Measurements from the airborne probe mounted on a Yun-12 (Y12) aircraft, together with Hybrid Single-Particle Lagrangian Integrated Trajectory model backward trajectories indicated that the air mass from the south of Tongliao contained a high concentration of aerosol particles (1000–2500 cm−3) in the middle and lower parts of the troposphere. Moreover, detailed intercomparison of data obtained on two days in 2010 indicated that the activation efficiency in terms of the ratio of N CCN to N a (aerosols measured from PCASP) was 0.74 (0.4 supersaturations) when the air mass mainly came from south of Tongliao, and this value increased to 0.83 on the relatively cleaner day. Thus, long-range transport of anthropogenic pollutants from heavily polluted mega cities, such as Beijing and Tianjin, may result in slightly decreasing activation efficiencies.

摘要

气溶胶直接和间接辐射效应是目前气候研究的重点之一, 而目前中国气溶胶及CCN飞机直接观测数据的时空分布较为稀疏. 有鉴于此, 本文利用2010-2011年5月–9月内蒙东部通辽地区飞机搭载PCASP及CCN计数器的观测资料, 重点分析了该地区气溶胶及CCN的分布特征. 统计结果表明, 该地区气溶胶(0.1–3μm)的平均值在各个高度层上均远小于北京及其周边重污染地区, 接近于典型清洁地区的分布情况. 边界层内气溶胶数浓度的均值在5–7月份较高, 8–9月份较低, 与MODIS AOD的变化趋势基本一致. 另外, 利用飞机观测资料结合HYSPLIT后向轨迹模拟, 重点分析了2010年8月8日及8月15日两天不同的空气团对CCN数浓度及活化率的影响. 结果显示, 来自华北等高污染地区的空气团可显著增加CCN数浓度, 但同时降低了CCN活化率.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhikari, M., Y. Ishizaka, H. Minda, R. Kazaoka, J. B. Jensen, J. L. Gras, and T. Nakajima, 2005: Vertical distribution of cloud condensation nuclei concentrations and their effect on microphysical properties of clouds over the sea near the southwest islands of Japan. J. Geophys. Res., 110, D10203, doi: 10.1029/2004JD004758.

    Article  Google Scholar 

  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923), 1227–1230, doi: 10.1126/science.245.4923.1227.

    Article  Google Scholar 

  • Andreae, M. O., and D. Rosenfeld, 2008: Aerosol-cloudprecipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 89, 13–41, doi: 10.1016/j.earscirev.2008.03.001.

    Article  Google Scholar 

  • Broekhuizen, K., R. Y. W. Chang, W. R. Leaitch, S. M. Li, and J. P. D. Abbatt, 2006: Closure between measured and modeled cloud condensation nuclei (CCN) using size-resolved aerosol compositions in downtown Toronto. Atmos. Chem. Phys., 6(9), 2513–2524, doi: 10.5194/acp-6-2513-2006.

    Article  Google Scholar 

  • Chen, Q., Y. Yin, L. J. Jin, H. Xiao, and S. C. Zhu, 2011: The effect of aerosol layers on convective cloud microphysics and precipitation. Atmos. Res., 101, 327–340, doi: 10.1016/j.atmosres.2011.03.007.

    Article  Google Scholar 

  • Chuang, P. Y., D. R. Collins, H. Pawlowska, J. R. Snider, H. H. Jonsson, J. L. Brenguier, R. C. Flagan, and J. H. Seinfeld, 2000: CCN measurements during ACE-2 and their relationship to cloud microphysical properties. Tellus B, 52, 843–867, doi: http://dx.doi.org/10.1034/j.1600-0889.2000.00018.x.

    Article  Google Scholar 

  • Covert, D. S., J. L. Gras, A. Wiedensohler, and F. Stratmann, 1998: Comparison of directly measured CCN with CCN modeled from the number-size distribution in the marine boundary layer during ACE 1 at Cape Grim, Tasmania. J. Geophys. Res., 103(D13), 16597–16608, doi: 10.1029/98JD01093.

    Article  Google Scholar 

  • Deng, Z. Z., C. S. Zhao, Q. Zhang, M. Y. Huang, and X. C. Ma, 2009: Statistical analysis of microphysical properties and the parameterization of effective radius of warm clouds in Beijing area. Atmos. Res., 93, 888–896, doi: 10.1016/j.atmosres. 2009.04.011.

    Article  Google Scholar 

  • Draxler, R. R., 1992: Hybrid single-particle Lagrangian integrated trajectories (HY-SPLIT): Version 3.0–User’s guide and model description. NOAA Tech. Memo. ERL ARL-195, National Technical Information Service, Springfield, VA

    Google Scholar 

  • Duan, J., Y. Chen, and X. L. Guo, 2012: Characteristics of aerosol activation efficiency and aerosol and CCN vertical distributions in North China. Acta Meteorologica Sinica, 26, 579–596, doi: 10.1007/s13351-012-0504-6.

    Article  Google Scholar 

  • Fang, S. S., Y. X. Han, K. Chen, C. S. Lu, Y. Yin, H. B. Tan, and J. Wang, 2016: Parameterization and comparative evaluation of the CCN number concentration on Mt. Huang, China. Atmos. Res., 181, 300–311, doi: 10.1016/j.atmosres.2016.07.004.

    Article  Google Scholar 

  • Gunthe, S. S., and Coauthors, 2011: Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing. Atmos. Chemi. and Phys., 11, 11023–11039, doi: 10.5194/acp-11-11023-2011.

    Article  Google Scholar 

  • Haywood, J. M., S. R. Osborne, P. N. Francis, A. Keil, P. Formenti, M. O. Andreae, and P. H. Kaye, 2003: The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000. J. Geophys. Res., 108(D13), 8473, doi: 10.1029/2002JD002226.

    Google Scholar 

  • Hegg, D. A., L. F. Radke, and P. V Hobbs, 1991: Measurements of Aitken nuclei and cloud condensation nuclei in the marine atmosphere and their relation to the DMS-cloud-climate hypothesis. J. Geophy. Res., 96(D10), 18727–18733, doi: 10.1029/91JD01870.

    Article  Google Scholar 

  • Hegg, D. A., P. V. Hobbs, S. Gassó, J. D. Nance, and A. L. Rangno, 1996: Aerosol measurements in the arctic relevant to direct and indirect radiative forcing. J. Geophys. Res., 101(D18), 23349–23363, doi: 10.1029/96JD02246.

    Article  Google Scholar 

  • Hobbs, P. V., 1971: Simultaneous airborne measurements of cloud condensation nuclei and sodium-containing particles over the ocean. Quart. J. Roy. Meteor. Soc., 97, 263–271, doi: 10.1002/qj.49709741302.

    Article  Google Scholar 

  • Hoppel, W. A., J. E. Dinger, and R. E. Ruskin, 1973: Vertical profiles of CCN at various geographical locations. J. Atmos. Sci., 30, 1410–1420, doi: 10.1175/1520-0469(1973)030<1410: VPOCAV>2.0.CO;2.

    Article  Google Scholar 

  • Hudson, J. G., and Y. H. Xie, 1999: Vertical distributions of cloud condensation nuclei spectra over the summertime northeast Pacific and Atlantic Oceans. J. Geophys. Res., 104(D23), 30219–30229, doi: 10.1029/1999JD900413.

    Article  Google Scholar 

  • Hudson, J. G., and S. S. Yum, 2001: Maritime-continental drizzle contrasts in small cumuli. J. Atmos. Sci., 58(8), 915–926, doi: 10.1175/1520-0469(2001)058<0915:MCDCIS>2.0.CO;2.

    Article  Google Scholar 

  • Huebert, B. J., T. Bates, P. B. Russell, G. Y. Shi, Y. J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima, 2003: An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J. Geophys. Res., 108(D23), 8633, doi: 10.1029/2003JD 003550.

    Article  Google Scholar 

  • Jaffe, D., I. McKendry, T. Anderson, and H. Price, 2003: Six “new” episodes of trans-Pacific transport of air pollutants. Atmos. Environ., 37(3), 391–404, doi: 10.1016/S1352-2310(02) 00862-2.

    Article  Google Scholar 

  • Kim, H. S., Y. S. Chung, and S. G. Lee, 2012: Characteristics of aerosol types during large-scale transport of air pollution over the Yellow Sea region and at Cheongwon, Korea, in 2008. Environmental Monitoring and Assessment, 184, 1973–1984, doi: 10.1007/s10661-011-2092-9.

    Article  Google Scholar 

  • Kim, J. H., S. S. Yum, S. Shim, S.-C. Yoon, J. G. Hudson, J. Park, and S.-J. Lee, 2011: On aerosol hygroscopicity, cloud condensation nuclei (CCN) spectra and critical supersaturation measured at two remote islands of Korea between 2006 and 2009. Atmos. Chem. Phys., 11, 12627–12645, doi: 10.5194/acp-11-12627-2011.

    Article  Google Scholar 

  • Kim, S. W., and Coauthors, 2005: Aerosol optical, chemical and physical properties at Gosan, Korea during Asian dust and pollution episodes in 2001. Atmos. Environ., 39, 39–50, doi: 10.1016/j.atmosenv.2004.09.056.

    Article  Google Scholar 

  • Kim, S. W., S. C. Yoon, J. Kim, and S. Y. Kim, 2007: Seasonal and monthly variations of columnar aerosol optical properties over East Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements. Atmos. Environ., 41, 1634–1651, doi: 10.1016/j.atmosenv.2006. 10.044.

    Article  Google Scholar 

  • Konwar, M., R. S. Maheskumar, J. R. Kulkarni, E. Freud, B. N. Goswami, and D. Rosenfeld, 2012: Aerosol control on depth of warm rain in convective clouds. J. Geophys. Res., 117, D13204, doi: 10.1029/2012JD017585.

    Article  Google Scholar 

  • Lance, S., A. Nenes, J. Medina, and J. N. Smith, 2006: Mapping the operation of the DMT continuous flow CCN counter. Aerosol Science and Technology, 40, 242–254, doi: 10.1080/02786820500543290.

    Article  Google Scholar 

  • Leaitch, W. R., J. W. Strapp, G. A. Isaac, and J. G. Hudson, 1986: Cloud droplet nucleation and cloud scavenging of aerosol sulphate in polluted atmospheres. Tellus B, 38B, 328–344, doi: http://dx.doi.org/10.1111/j.1600-0889.1986.tb00258.x.

    Article  Google Scholar 

  • Liu, P. F., C. S. Zhao, P. F. Liu, Z. Z. Deng, M. Y. Huang, X. C. Ma, and X. X. Tie, 2009: Aircraft study of aerosol vertical distributions over Beijing and their optical properties. Tellus B, 61, 756–767, doi: http://dx.doi.org/10.1111/j.1600- 0889.2009.00440.x.

    Article  Google Scholar 

  • Lu, G. X., and X. L. Guo, 2012: Distribution and origin of aerosol and its transform relationship with CCN derived from the spring multi-aircraft measurements of Beijing Cloud Experiment (BCE). Chinese Science Bulletin, 57, 2460–2469, doi: 10.1007/s11434-012-5136-9.

    Article  Google Scholar 

  • Lu, M. L., G. Feingold, H. H. Jonsson, P. Y. Chuang, H. Gates, R. C. Flagan, and J. H. Seinfeld, 2008: Aerosol-cloud relationships in continental shallow cumulus. J. Geophys. Res., 113, D15201, doi: 10.1029/2007JD009354.

    Article  Google Scholar 

  • McFiggans, G., and Coauthors, 2006: The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys., 6, 2593–2649, doi: 10.5194/acp-6-2593-2006.

    Article  Google Scholar 

  • Moore, R. H., and A. Nenes, 2009: Scanning flow CCN analysis— a method for fast measurements of CCN spectra. Aerosol Science and Technology, 43, 1192–1207, doi: 10.1080/02786820903289780.

    Article  Google Scholar 

  • Nober, F. J., H. F. Graf, and D. Rosenfeld, 2003: Sensitivity of the global circulation to the suppression of precipitation by anthropogenic aerosols. Global and Planetary Change, 37, 57–80, doi: 10.1016/S0921-8181(02)00191-1.

    Article  Google Scholar 

  • Paramonov, M., and Coauthors, 2015: A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network. Atmos. Chem. Phys., 15, 12211–12229, doi: 10.5194/acp-15-12211-2015.

    Article  Google Scholar 

  • Raga, G. B., and P. R. Jonas, 1995: Vertical distribution of aerosol particles and CCN in clear air around the British Isles. Atmos. Environ., 29(6), 673–684, doi: 10.1016/1352-2310(94)00314-B.

    Article  Google Scholar 

  • Raymond, T. M., and S. N. Pandis, 2003: Formation of cloud droplets by multicomponent organic particles. J. Geophys. Res., 108, 4469, doi: 10.1029/2003JD003503.

    Article  Google Scholar 

  • Roberts, G. C., and A. Nenes, 2005: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurement. Aerosol Science and Technology, 39, 206–221, doi: 10.1080/027868290913988.

    Article  Google Scholar 

  • Roberts, G. C., M. O. Andreae, J. C. Zhou, and P. Artaxo, 2001: Cloud condensation nuclei in the Amazon Basin: “Marine” conditions over a continent? Geophys. Res. Lett., 28, 2807–2810, doi: 10.1029/2000GL012585.

    Article  Google Scholar 

  • Rose, D., and Coauthors, 2010: Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China–Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity. Atmos. Chem. Phys., 10, 3365–3383, doi: 10.5194/acp-10-3365-2010.

    Article  Google Scholar 

  • Seinfeld, J. H., and S. N. Pandis, 1997: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, 444–445.

    Google Scholar 

  • Shi, L. X., and Y. Duan, 2007: Observations of cloud condensation nuclei in North China. Acta Meteorologica Sinica, 65(4), 644–652, doi: 10.11676/qxxb2007.059. (in Chinese)

    Google Scholar 

  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607–613, doi: 10.1038/nature08281.

    Article  Google Scholar 

  • Twomey, S., 1971: The composition of cloud nuclei. J. Atmos. Sci., 28, 377–381, doi: 10.1175/1520-0469(1971)028<0377: TCOCN>2.0.CO;2.

    Article  Google Scholar 

  • Vestin, A., J. Rissler, E. Swietlicki, G. P. Frank, and M. O. Andreae, 2007: Cloud-nucleating properties of the Amazonian biomass burning aerosol: Cloud condensation nuclei measurements and modeling. J. Geophys. Res., 112, D14201, doi: 10.1029/2006JD008104.

    Article  Google Scholar 

  • Yin, Y., T. G. Reisin, and S. Tzivion, 2000: The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—A numerical study. Atmos. Res., 53, 91–116, doi: 10.1016/S0169-8095(99)00046-0.

    Article  Google Scholar 

  • Zhang, Q., C. S. Zhao, X. X. Tie, Q. Wei, M. Y. Huang, G. H. Lie, Z. M. Ying, and C. C. Li, 2006: Characterizations of aerosols over the Beijing region: A case study of aircraft measurements. Atmos. Environ., 40, 4513–4527, doi: 10.1016/j.atmosenv.2006.04.032.

    Article  Google Scholar 

  • Zhang, Q., J. N. Quan, X. X. Tie, M. Y. Huang, and X. C. Ma, 2011: Impact of aerosol particles on cloud formation: Aircraft measurements in China. Atmos. Environ., 45, 665–672, doi: 10.1016/j.atmosenv.2010.10.025.

    Article  Google Scholar 

  • Zhao, C. S., X. X. Tie, and Y. P. Lin, 2006: A possible positive feedback of reduction of precipitation and increase in aerosols over eastern central China. Geophys. Res. Lett., 33, L11814, doi: 10.1029/2006GL025959.

    Article  Google Scholar 

Download references

Acknowledgements

This article was jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05100304) and the Chinese Natural Science Foundation (Grant Nos. 41475028 and 41405128). The authors are grateful to NASA/GSFC for the use of their MODIS Level 2 aerosol products, and the NOAA Air Resources Laboratory for the provision of the HYSPLIT transport and dispersion model. The authors express thanks to the aircraft observations team of China Fly Dragon Special Aviation Company and the Weather Modification Office, Tongliao Meteorology Bureau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiefan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Lei, H. & Lü, Y. Airborne observations of cloud condensation nuclei spectra and aerosols over East Inner Mongolia. Adv. Atmos. Sci. 34, 1003–1016 (2017). https://doi.org/10.1007/s00376-017-6219-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-6219-y

Key words

关键词

Navigation