Skip to main content
Log in

Recent changes in precipitation extremes in the Heihe River basin, Northwest China

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Changes in rainfall extremes pose a serious and additional threat to water resources planning and management, natural and artificial oasis stability, and sustainable development in the fragile ecosystems of arid inland river basins. In this study, the trend and temporal variation of extreme precipitation are analyzed using daily precipitation datasets at 11 stations over the arid inland Heihe River basin in Northwest China from 1960 to 2011. Eight indices of extreme precipitation are studied. The results show statistically significant and large-magnitude increasing and decreasing trends for most indices, primarily in the Qilian Mountains and eastern Hexi Corridor. More frequent and intense rainfall extremes have occurred in the southern part of the desert area than in the northern portion. In general, the temporal variation in precipitation extremes has changed throughout the basin. Wet day precipitation and heavy precipitation days show statistically significant linear increasing trends and step changes in the Qilian Mountains and Hexi Corridor. Consecutive dry days have decreased obviously in the region in most years after approximately the late 1980s, but meanwhile very long dry spells have increased, especially in the Hexi Corridor. The probability density function indicates that very long wet spells have increased in the QilianMountains. The East Asian summer monsoon index and western Pacific subtropical high intensity index possess strong and significant negative and positive correlations with rainfall extremes, respectively. Changes in land surface characteristics and the increase in water vapor in the wet season have also contributed to the changes in precipitation extremes over the river basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar, E., and Coauthors, 2005: Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res., 110, D23107, doi: 10.1029/2005JD006119.

    Google Scholar 

  • Alexander, L. V., P. Hope, D. Collins, B. Trewin, A. Lynch, and N. Nicholls, 2007: Trends in Australia’s climate means and extremes: a global context. Aust. Meteor. Mag., 56, 1–18.

    Google Scholar 

  • Alexander, and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi: 10.1029/2005JD006290.

  • Anthes, R. A., 1984: Enhancement of convective precipitation by mesoscale variations in vegetative covering in semiarid regions. J. Climate Appl. Meteor., 23, 541–554, doi: 10.1175/1520-0450(1984)023<0541:EOCPBM>2.0.CO;2

    Article  Google Scholar 

  • Asquith, W., 2015: L-moments, Censored L-moments, Trimmed Lmoments, L-comoments, and Many Distributions. R package version 2.1.4, 532 pp. [Available online at http://www.cran.rproject.org/package=lmomco.]

    Google Scholar 

  • Bronaugh, D., and A. Werner, 2013: zyp: Zhang + Yue-Pilon trends package. R package version 0. 10-1, 9 pp. [Available online at http://CRAN.R-project.org/package=zyp.]

    Google Scholar 

  • Brown, S. J., J. Caesar, and C. A. T. Ferro, 2008: Global changes in extreme daily temperature since 1950. J. Geophys. Res., 113, D05115, doi: 10.1029/2006JD008091.

  • Chen, Y. N., H. J. Deng, B. F. Li, Z. Li, and C. C. Xu, 2014: Abrupt change of temperature and precipitation extremes in the arid region of Northwest China. Quaternary International, 336, 35–43, doi: 10.1016/j.quaint.2013.12.057.

    Article  Google Scholar 

  • Cheng, G. D., X. Li, W. Z. Zhao, Z. M. Xu, Q. Feng, S. C. Xiao, and H. L. Xiao, 2014: Integrated study of the waterecosystem-economy in the Heihe River Basin. National Science Review, 1, 413–428, doi: 10.1093/nsr/nwu017.

    Article  Google Scholar 

  • Chiang, S.-H., and K.-T. Chang, 2011: The potential impact of climate change on typhoon-triggered landslides in Taiwan, 2010–2099. Geomorphology, 133, 143–151, doi: 10.1016/j.geomorph.2010.12.028.

    Article  Google Scholar 

  • Chiew, F., and L. Siriwardena, 2005: TREND user guide, 23 pp. [Available online at http://www.toolkit.net.au/Tools/DownloadDocumentation.aspx?id=1000134.]

    Google Scholar 

  • Choi, G., and Coauthors, 2009: Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. Int. J. Climatol., 29, 1906–1925, doi: 10.1002/joc.1979.

    Article  Google Scholar 

  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag, London, 208 pp.

    Book  Google Scholar 

  • Conover, W. J., 1971: Practical Nonparametric Statistics. Wiley, New York, 462 pp.

    Google Scholar 

  • Deng, H. J., Y. N. Chen, X. Shi, W. H. Li, H. J.Wang, S. H. Zhang, and G. H. Fang, 2014: Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of northwest China. Atmospheric Research, 138, 346–355, doi: 10.1016/j.atmosres.2013.12.001.

    Article  Google Scholar 

  • Deng, X. Z., Q. L. Shi, Q. Zhang, C. C. Shi, and F. Yin, 2015: Impacts of land use and land cover changes on surface energy and water balance in the Heihe River Basin of China, 2000–2010. Physics and Chemistry of the Earth, Parts A/B/C, doi: 10.1016/j.pce.2015.01.002.

    Google Scholar 

  • Ding, Y. H., Y. Sun, Z. Y. Wang, Y. X. Zhu, and Y. F. Song, 2009: Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. Int. J. Climatol., 29, 1926–1944, doi: 10.1002/joc.1759.

    Article  Google Scholar 

  • Ding, Y. H., Z. Y. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol., 28, 1139–1161, doi: 10.1002/joc.1615.

    Article  Google Scholar 

  • Donat, M. G., and Coauthors, 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res., 118, 2098–2118, doi: 10.1002/jgrd.50150.

    Article  Google Scholar 

  • Dong, D.-Y., S.-W. Wang, and J.-H. Zhu, 2012: East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 2073–2076, doi: 10.1029/2000GL012311.

    Google Scholar 

  • Fang, C.-L., 2002: Discrepancy laws of the eco-economic zone in Heihe drainage area and its coupling development pattern. Acta Ecologica Sinica, 22, 659–668. (in Chinese with English abstract)

    Google Scholar 

  • Feng, J., D. Yan, C. Li, Y. Gao., and J. Liu, 2014: Regional frequency analysis of extreme precipitation after drought events in the Heihe River basin, Northwest China. Journal of Hydrologic Engineering, 19, 1101–1112, doi: 10.1061/(ASCE)HE.1943-5584.0000903.

    Article  Google Scholar 

  • Feng, Q., W. Liu, and H. Y. Xi, 2013: Comprehensive evaluation and indicator system of land desertification in the Heihe River basin. Nature Hazards, 65, 1573–1588, doi: 10.1007/s11069-012-0429-5.

    Article  Google Scholar 

  • Fischer, E. M., and R. Knutti, 2014: Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett., 41, 547–554, doi: 10.1002/2013GL058499.

    Article  Google Scholar 

  • Frich, P., L. V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. M. G. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19, 193–212, doi: 10.3354/cr019193.

    Article  Google Scholar 

  • Fu, G. B., J. J. Yu, X. B. Yu, R. Ouyang, Y. C. Zhang, P.Wang, W. B. Liu, and L. L. Min, 2013: Temporal variation of extreme rainfall events in China, 1961–2009. J. Hydrol., 487, 48–59, doi: 10.1016/j.jhydrol.2013.02.021.

    Article  Google Scholar 

  • Fu, G. B., N. R. Viney, S. P. Charles, and J. R. Liu, 2010: Longterm temporal variation of extreme rainfall events in Australia: 1910–2006. Journal of Hydrometeorology, 11, 950–965, doi: 10.1175/2010JHM1204.1.

    Article  Google Scholar 

  • Gao, Y. H., and Coauthors, 2008: Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China. J. Geophys. Res., 113, D20S90, doi: 10.1029/2008JD010359.

  • Gilleland, E., and R.W. Katz, 2011: New software to analyze how extremes change over time. Eos, 92, 13–14, doi: 10.1029/2011EO020001.

    Article  Google Scholar 

  • Grant, O. M., L. Tronina, J. C. Ramalho, C. Kurz Besson, R. Lobodo-Vale, J. Santos Pereira, H. G. Jones, and M. M. Chaves, 2010: The impact of drought on leaf physiology of Quercus suber L. trees: Comparison of an extreme drought event with chronic rainfall reduction. Journal of Experimental Botany, 61, 4361–4371, doi: 10.1093/jxb/erq239.

    Article  Google Scholar 

  • Gregersen, I. B., H. J. D. Sørup, H. Madsen, D. Rosbjerg, P. S. Mikkelsen, and K. Arnbjerg-Nielsen, 2013: Assessing future climatic changes of rainfall extremes at small spatio-temporal scales. Climatic Change, 118, 783–797, doi: 10.1007/s10584-012-0669-0.

    Article  Google Scholar 

  • Groisman, P. Y., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 1326–1350, doi: 10.1175/JCLI3339.1.

    Article  Google Scholar 

  • Hair, J. F., W. C. Black, B. J. Babin, and R. E. Anderson, 2009: Multivariate Data Analysis. 7th ed. Prentice Hall, New Jersey, 816 pp.

    Google Scholar 

  • Heisler-white, J., J. M. Blair, E. F. Kelly, K. Harmoney, and A. K. Knapp, 2009: Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Global Change Biology, 15, 2894–2904, doi: 10.1111/j.1365-2486.2009.01961.x.

    Article  Google Scholar 

  • Hirsch, R. M., J. R. Slack, and R. A. Smith, 1982: Techniques of trend analysis for monthly water quality data. Water Resour. Res., 18, 107–121, doi: 10.1029/WR018i001p00107.

    Article  Google Scholar 

  • Hosking, J. R. M., and J. R. Wallis, 1997: Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press, 242 pp.

    Book  Google Scholar 

  • Hossain, F., I. Jeyachandran, and R. Pielke Jr., 2010: Dam safety effects due to human alteration of extreme precipitation. Water Resour. Res., 46, W03301, doi: 10.1029/2009WR007704.

  • Huang, R. H., and Y. F. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 21–32, doi: 10.1007/BF02656915.

    Article  Google Scholar 

  • IPCC, 2001: Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Houghton et al., Eds., Cambridge University Press, Cambridge, 881 pp.

    Google Scholar 

  • IPCC, 2012: Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Field et al., Eds., Cambridge University Press, Cambridge, 582 pp.

    Google Scholar 

  • IPCC, 2013: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker et al., Eds., Cambridge University Press, Cambridge, 1535 pp.

    Google Scholar 

  • Jeswani, H. K., W. Wehrmeyer, and Y. Mulugetta, 2008: How warm is the corporate response to climate change? Evidence from Pakistan and the UK. Business Strategy and the Environment, 18, 46–60, doi: 10.1002/bse.569.

    Article  Google Scholar 

  • Jones, M. R., S. Blenkinsop, H. J. Fowler, and C. G. Kilsby, 2014: Objective classification of extreme rainfall regions for the UK and updated estimates of trends in regional extreme rainfall. Int. J. Climatol., 34, 751–765, doi: 10.1002/joc.3720.

    Article  Google Scholar 

  • Kang, E., G. D. Cheng, K. C. Song, B. Jin, X. D. Liu, and J. Y. Wang, 2005: Simulation of energy and water balance in Soil-Vegetation- Atmosphere Transfer system in the mountain area of Heihe River Basin at Hexi Corridor of Northwest China. Science in China (D), 48, 538–548, doi: 10.1360/02yd0428.

    Article  Google Scholar 

  • Kang, S. Y., B. Yang, and C. Qin, 2012: Recent tree-growth reduction in north central China as a combined result of a weakened monsoon and atmospheric oscillations. Climatic Change, 115, 519–536, doi: 10.1007/s10584-012-0440-6.

    Article  Google Scholar 

  • Kendall, M. G., 1970: Rank Correlation Methods. Griffin, London, 202 pp.

    Google Scholar 

  • Kharin, V. V., and F. W. Zwiers, 2000: Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere-ocean GCM. J. Climate, 13, 3760–3788, doi: 10.1175/1520-0442(2000)013<3760:CITEIA>2.0.CO;2.

    Article  Google Scholar 

  • Kiktev, D., J. Caesar, L. V. Alexander, H. Shiogama, and M. Collier, 2007: Comparison of observed and multi-modeled trends in annual extremes of temperature and precipitation. Geophys. Res. Lett., 34, L10702, doi: 10.1029/2007GL029539.

  • Klein Tank, A. M. G., and G. P. Können, 2003: Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J. Climate, 16, 3665–3680, doi: 10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2.

    Article  Google Scholar 

  • Klein Tank, A. M. G., F. W. Zwiers, and X. Zhang, 2009: Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. Climate Data and Monitoring, WCDMP-No. 72, WMO-TD No. 1500, 56 pp.

    Google Scholar 

  • Klein Tank, A. M. G., and Coauthors, 2006: Changes in daily temperature and precipitation extremes in central and south Asia. J. Geophys. Res., 111, D16105, doi: 10.1029/2005JD006316.

  • Knapp, A. K., and Coauthors, 2008: Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience, 58, 811–821, doi: 10.1641/B580908.

    Article  Google Scholar 

  • Kundzewicz, Z. W., and A. Robson, 2000: Detecting Trend and Other Changes in Hydrological Data. World Climate Program-Water, WMO/UNESCO, WCDMP-45, WMO/TD 1013, Geneva, 157 pp.

    Google Scholar 

  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. Journal of Hydrometeorology, 13, 1131–1141, doi: 10.1175/JHM-D-11-0108.1.

    Article  Google Scholar 

  • Lau, K.-M., and M.-T. Li, 1984: The monsoon of East Asia and its global associations—A survey. Bull. Amer. Meteor. Soc., 65, 114–125, doi: 10.1175/1520-0477(1984)065<0114:TMOEAA>2.0.CO;2.

    Article  Google Scholar 

  • Li, B. F., Y. N. Chen, and X. Shi, 2012: Why does the temperature rise faster in the arid region of Northwest China? J. Geophys. Res., 117, D16115, doi: 10.1029/2012JD017953.

    Article  Google Scholar 

  • Li, H.-Y., Z.-H. Lin, and H. Chen, 2009: Interdecadal variability of spring precipitation over South China and its associated atmospheric water vapor transport. Atmos. Oceanic Sci. Lett., 2, 113–118.

    Article  Google Scholar 

  • Li, J. P., and Q. C. Zeng, 2002: A unified monsoon index. Geophys. Res. Lett., 29, 1151–1154, doi: 10.1029/2001GL013874.

    Google Scholar 

  • Li, J. P., and Q. C. Zeng, 2003: A new monsoon index and the geographical distribution of the global monsoons. Adv. Atmos. Sci., 20, 299–302, doi: 10.1007/s00376-003-0016-5.

    Article  Google Scholar 

  • Li, Q. P., and Y. H. Ding, 2012: Climate simulation and future projection of precipitation and the water vapor budget in the Haihe River basin. Acta Meteorologica Sinica, 26, 345–361, doi: 10.1007/s13351-012-0307-9.

    Article  Google Scholar 

  • Li, Z. L., W. Wang, and Z. Li, 2014: Frequency analysis of extremes precipitation in the Heihe River basin based on Generalized Pareto Distribution. Geographical Research, 33, 2169–2179, doi: 10.11821/dlyj201411016. (in Chinese with English abstract)

    Google Scholar 

  • Liu, W., S. Cao, H. Y. Xi, and Q. Feng, 2010a: Land use history and status of land desertification in the Heihe River Basin. Natural Hazards, 53, 273–290, doi: 10.1007/s11069-009-9429-5.

    Article  Google Scholar 

  • Liu, Y., J. Y. Sun, H. M. Song, Q. F. Cai, G. Bao, and X. X. Li, 2010b: Tree-ring hydrologic reconstructions for the Heihe River watershed, western China since AD 1430. Water Research, 44, 2781–2792, doi: 10.1016/j.watres.2010.02.013.

    Article  Google Scholar 

  • Liu, Y. M., and G. X. Wu, 2004: Progress in the study on the formation of the summertime subtropical anticyclone. Adv. Atmos. Sci., 21, 322–342, doi: 10.1007/BF02915562.

    Article  Google Scholar 

  • Loarie, S. R., P. B. Duffy, H. Hamilton, G. P. Asner, C. B. Field, and D. D. Ackerly, 2009: The velocity of climate change. Nature, 462, 1052–1055, doi: 10.1038/nature08649.

    Article  Google Scholar 

  • Lu, L., X. Li, and G. D. Cheng, 2003: Landscape evolution in the middle Heihe River Basin of north-west China during the last decade. Journal of Arid Environments, 53, 395–408, doi: 10.1006/jare.2002.1032.

    Article  Google Scholar 

  • Ma, M. G., and V. Frank, 2006: Interannual variability of vegetation cover in the Chinese Heihe River basin and its relation to meteorological parameters. Int. J. Remote Sens., 27, 3473–3486, doi: 10.1080/01431160600593031.

    Article  Google Scholar 

  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245–259.

    Article  Google Scholar 

  • Manton, M. J., and Coauthors, 2001: Trends in extreme daily rainfall and temperature in southeast Asia and the South Pacific: 1961–1998. Int. J. Climatol., 21, 269–284, doi: 10.1002/joc.610.

    Article  Google Scholar 

  • Marengo, J. A., J. Tomasella, W. R. Soares, L. M. Alves, and C. A. Nobre, 2012: Extreme climatic events in the Amazon basin. Theor. Appl. Chimatol., 107, 73–85, doi: 10.1007/s00704-011-0465-1.

    Article  Google Scholar 

  • Nandintsetseg, B., J. S. Greene, and C. E. Goulden, 2007: Trends in extreme daily precipitation and temperature near Lake Hövsgöl, Mongolia. Int. J. Climatol., 27, 341–347, doi: 10.1002/joc.1404.

    Article  Google Scholar 

  • Pal, I., and A. Al-Tabbaa, 2011: Monsoon rainfall extreme indices and tendencies from 1954–2003 in Kerala, India. Climatic Change, 106, 407–419, doi: 10.1007/s10584-011-0044-6.

    Article  Google Scholar 

  • Peterson, T. C., X. Zhang, M. Brunet-India, and J. L. Vázquez-Aguirre, 2008: Changes in North American extremes derived from daily weather data. J. Geophys. Res., 113, 1–9, doi: 10.1029/2007JD009453.

    Google Scholar 

  • Piccarreta, M., A. Pasini, and D. Capolongo, 2013: Changes in daily precipitation extremes in the Mediterranean from 1951 to 2010: The Basilicata region, southern Italy. Int. J. Climatol, 33, 3229–3248, doi: 10.1002/joc.3670.

    Article  Google Scholar 

  • Qi, S. Z., and F. Luo, 2005: Water environmental degradation of the Heihe River basin arid northwestern China. Environmental Monitoring and Assessment, 108, 205–215, doi: 10.1007/s10661-005-3912-6.

    Article  Google Scholar 

  • Qi, S. Z., and F. Luo, 2006: Land-use change and its environmental impact in the Heihe River basin, arid northwestern China. Environmental Geology, 50, 535–540, doi: 10.1007/s00254-006-0230-4.

    Article  Google Scholar 

  • Qin, C., B. Yang, I. Burchardt, X. L. Hu, and X. C. Kang, 2010: Intensified pluvial conditions during the twentieth century in the inland Heihe River basin in arid northwestern China over the past millennium. Global and Planetary Change, 72, 192–200, doi: 10.1016/j.gloplacha.2010.04.005.

    Article  Google Scholar 

  • R Core Team, 2013: R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria. ISBN 3-900051-07-0. [Available online at: http://www.R-project.org.]

    Google Scholar 

  • Rajczak, J., P. Pall, and C. Schär, 2013: Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J. Geophys. Res., 118, 610–3626, doi: 10.1002/jgrd.50297.

    Google Scholar 

  • Ran, Q. H., D. Y. Su, P. Li, and Z. G. He, 2012: Experimental study of the impact of rainfall characteristics on runoff generation and soil erosion. J. Hydrol., 424–425, 99–111, doi: 10.1016/j.jhydrol.2011.12.035.

    Google Scholar 

  • Rosenberg, E. A., P. W. Keys, D. B. Booth, D. Hartley, J. Burkey, A. C. Steinemann, and D. P. Lettenmaier, 2010: Precipitation extremes and the impacts of climate change on stormwater infrastructure in Washington State. Climate Change, 102, 319–349, doi: 10.1007/s10584-010-9847-0.

    Article  Google Scholar 

  • Saidi, H., M. Ciampittiello, C. Dresti, and G. Ghiglieri, 2013: Observed variability and trends in extreme rainfall indices and Peaks-Over-Threshold series. Hydrology and Earth System Sciences Discusses, 10, 6049–607, doi: 10.5194/hessd-10-6049-2013.

    Article  Google Scholar 

  • Sanabria, L. A., and R. P. Cechet, 2010: Severe wind hazard assessment using Monte Carlo simulation. Environmental Modeling & Assessment, 15, 147–154, doi: 10.1007/s10666-008-9188-9.

    Article  Google Scholar 

  • Samuels, R., A. Rimmer, and P. Alpert, 2009: Effect of extreme rainfall events on the water resources of the Jordan River. J. Hydrol., 375, 513–523, doi: 10.1016/j.jhydrol.2009.07.001.

    Article  Google Scholar 

  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379–1389, doi: 10.1080/01621459.1968.10480934.

    Article  Google Scholar 

  • Seneviratne, S. I., D. Lôthi, and M. Litschi, 2006: Landatmosphere coupling and climate change in Europe. Nature, 443, 205–209, doi: 10.1038/nature05095.

    Article  Google Scholar 

  • Shi, Y. F., Y. P. Shen, E. Kang, D. L. Li, Y. J. Ding, G. W. Zhang, and R. J. Hu, 2007: Recent and future climate change in Northwest China. J. Climate, 80, 379–393, doi: 10.1007/s10584-006-9121-7.

    Google Scholar 

  • Si, J. H., Q. Feng, X.H. Wen, Y.H. Su, H. Y. Xi, and Z. Q. Chang, 2009: Major ion chemistry of groundwater in the extreme arid region Northwest China. Environmental Geology, 57, 1079–1087, doi: 10.1007/s00254-008-1394-x.

    Article  Google Scholar 

  • Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013a: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J.Geophys. Res., 118, 1716–1733, doi: 10.1002/jgrd.50203.

    Google Scholar 

  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013b: Climate extreme indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res., 118, 2473–2493, doi: 10.1002/jgrd.50188.

    Google Scholar 

  • Tang, M. C., 1985: The distribution of precipitation in Mountain Qilian (Nanshan). Acta Geographica Sinica, 40, 323–332.

    Google Scholar 

  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 1205–1217, doi: 10.1175/BAMS-84-9-1205.

    Article  Google Scholar 

  • van den Besselaar, E. J. M., A. M. G. Klein Tank, and T. A. Buishand, 2013: Trends in European precipitation extremes over 1951–2010. Int. J. Climatol., 33, 2682–2689, doi: 10.1002/joc.3619.

    Google Scholar 

  • van Pelt, S. C., J. J. Beersma, T. A. Buishand, B. J. J. M. van den Hurk, and P. Kabat, 2012: Future changes in extreme precipitation in the Rhine basin based on global and regional climate model simulations. Hydrology and Earth System Sciences, 16, 4517–4530, doi: 10.5194/hess-16-4517-2012.

    Article  Google Scholar 

  • Vavrus, S. J., and R. J. Behnke, 2013: A comparison of projectedfuture precipitation in Wisconsin using global and downscaled climate model simulations: Implications for publichealth. Int. J. Climatol., 34, 3106-3124, doi: 10.1002/joc.3897.

    Article  Google Scholar 

  • Vincent, L. A., and Coauthors, 2011: Observed trends in indices ofdaily and extreme temperature and precipitation for the countriesof the western Indian Ocean, 1961-2008. J. Geophys.Res., 116, 1-12, doi: 10.1029/2010JD015303.

    Google Scholar 

  • Wang, G. X., J. Q. Liu, J. Kubota, and L. Chen, 2007: Effectsof land-use changes on hydrological processes in the middle basin of the Heihe River, Northwest China. Hydrological Processes, 21, 1370-1382, doi: 10.1002/hyp.6308.

    Article  Google Scholar 

  • Wang, H. J., Y. N. Chen, and Z. S. Chen, 2012: Spatial distributionand temporal trends of mean precipitation and extremes in thearid region, northwest of China, during 1960-2010. HydrologicalProcesses, 27, 1807-1818, doi: 10.1002/hyp.9339.

    Google Scholar 

  • Wang, H. J., Y. N. Chen, S. Xun, D. M. Lai, Y. T. Fan, and Z. Li, 2013: Changes in daily climate extremes in the arid area of northwestern China. Theor. Appl. Climatol., 112, 15-28, doi: 10.1007/s00704-012-0698-7.

    Article  Google Scholar 

  • Wang, J. F., and X. B. Zhang, 2008: Downscaling and projectionof winter extreme daily precipitation over North America. J.Climate, 21, 923-937, doi: 10.1175/2007JCLI1671.1.

    Article  Google Scholar 

  • Wang, J., H. Li, and X. Hao, 2010: Responses of snowmelt runoffto climatic change in an inland river basin, NorthwesternChina, over the past 50 years. Hydrology and Earth System Sciences, 14, 1979-1987, doi: 10.5194/hess-14-1979-2010.

    Article  Google Scholar 

  • Wang, K. L., G. D. Cheng, H. L. Xiao, and H. Jiang, 2004: The westerly fluctuation and water vapor transport over the Qilian-Heihe valley. Science in China Series (D), 47, 32-38, doi: 10.1360/04yd0004.

    Article  Google Scholar 

  • Wang, L. M., Q. L. Zhang, and J. Y. Yin, 2003: Study on thegrowth pattern and bio-productivity of the PopulusEuphraticaforest stand in Ejina. Journal of Arid Land Resources andEnvironment, 17, 94-99. (in Chinese with English abstract)

    Google Scholar 

  • Wang, X., and Y. Feng, 2010: RHtestsV3 User Manual, 27 pp. [Available online at: http://etccdi.pacificclimate.org/software.shtml]

    Google Scholar 

  • Wang, Y. B., Q. Feng, J. H. Si, Y. H. Su, Z. Q. Chang, and H. Y. Xi, 2011: The changes of vegetation cover in Ejina Oasis basedon water resources redistribution in Heihe River. Environmental Earth Sciences, 64, 1965-1973, doi: 10.1007/s12665-011-1013-0.

    Article  Google Scholar 

  • Wang, Y. Q., and L. Zhou, 2005: Observed trends in extreme precipitationevents in China during 1961-2001 and the associatedchanges in large-scale circulation. Geophys. Res. Lett., 32, L09707, doi: 10.1029/2005GL022574.

  • Wen, L. J., and J. M. Jin, 2012: Modelling and analysis of the impactof irrigation on local arid climate over Northwest China. Hydrological Processes, 26, 445-453, doi: 10.1002/hyp.8142.

    Article  Google Scholar 

  • Williams, C. J. R., and D. R. Kniveton, 2012: Atmosphere-landsurface interactions and their influence on extreme rainfalland potential abrupt climate change over southern Africa. ClimateChange, 112, 981-996, doi: 10.1007/s10584-011-0266-7.

    Google Scholar 

  • Xie, Y. W., L. L. Li, X. J. Zhao, and C. X. Yuan, 2012: Temporalspatialchanges of the oasis in the Heihe River basin overthe past 25 years. Sustainable development-education, businessand management-architecture and building constructionagricultureand food security. G. Chaouki, Ed., InTech, Croatia,313-330.

  • Xu, J. W., and Y. H. Gao, 2014: Validation of summer surfaceair temperature and precipitation simulation over Heihe Riverbasin. Plateau Meteorology, 33, 937-946. (in Chinese withEnglish abstract)

    Google Scholar 

  • Yin, Y. Y., 2006: Vulnerability and adaptation to climate variabilityand change in western China. AIACC, Project No. AS 25, 106 pp.

    Google Scholar 

  • You, Q. L., and Coauthors, 2011: Changes in daily climate extremesin China and their connection to the large scale atmosphericcirculation during 1961-2003. Climate Dyn., 36,2399-2417, doi: 10.1007/s00382-009-0735-0.

    Article  Google Scholar 

  • Yu, R. C., B. Wang, and T. J. Zhou, 2004: Tropospheric coolingand summer monsoon weakening trend over East Asia. Geophys.Res. Lett., 31, 1-4, doi: 10.1029/2004GL021270.

    Google Scholar 

  • Yue, S., P. Pilon, B. Phinney, and G. Cavadias, 2002: The influenceof autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes, 16, 1807-1829, doi: 10.1002/hyp.1095.

    Article  Google Scholar 

  • Zhai, P. M., X. B. Zhang, H. Wan, and X. H. Pan, 2005: Trendsin total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 1096-1108, doi: 10.1175/JCLI-3318.1.

    Article  Google Scholar 

  • Zhang, A. J., C. M. Zheng, S. Wang, and Y. Y. Yao, 2015: Analysis of streamflow variations in the Heihe River basin, Northwest China: trends, abrupt changes, driving factors and ecological influences. J. Hydrol., 3, 106-124, doi: 10.1016/j.ejrh.2014.10.005.

    Google Scholar 

  • Zhang, J. S., E. S. Kang, Y. C. Lan, and R. S. Chen, 2003: Impact of climate change and variability on water resources in Heihe River basin. Journal of Geographical Sciences, 13, 286-292,doi: 10.1007/BF02837501.

    Article  Google Scholar 

  • Zhang, Q., J. F. Li, V. P. Singh, and C. Y. Xu, 2003: Copula-basedspatio-temporal patterns of precipitation extremes in China.Int. J. Climatol., 33, 1140-1152, doi: 10.1002/joc.3499.

    Article  Google Scholar 

  • Zhang, Q., V. P. Singh, J. F. Li, and X. H. Chen, 2011a: Analysisof the periods of maximum consecutive wet days in China. J.Geophys. Res., 116, 1-18, doi: 10.1029/2011JD016088.

    Google Scholar 

  • Zhang, Q., C. Y. Xu, Z. X. Zhang, and Y. D. Chen, 2010: Changes of atmospheric water vapor budget in the Pearl River basinand possible implications for hydrological cycle. Theor. Appl.Climatol., 102, 185-195, doi: 10.1007/s00704-010-0257-z.

    Article  Google Scholar 

  • Zhang, X. B., L. V. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011b: Indicesfor monitoring changes in extremes based on daily temperatureand precipitation data. Wiley Interdisciplinary Reviews:Climate Change, 2, 851-870, doi: 10.1002/wcc.147.

    Google Scholar 

  • Zhao, C., Z. Nan, and G. Cheng, 2005: Methods for estimatingirrigation needs of spring wheat in the middle Heihe basin, China. Agricultural Water Management, 75, 54-70,doi: 10.1016/j.agwat.2004.12.003.

    Article  Google Scholar 

  • Zhao, W. Z., B. Liu, and Z. H. Zhang, 2010: Water requirementsof maize in the middle Heihe River basin, China. Agricultural Water Management, 97, 215-223, doi: 10.1016/j.agwat.2009.09.011.

    Article  Google Scholar 

  • Zhou, T. J., and Coauthors, 2009: Why the western Pacific subtropical high has extended westward since the Late 1970s. J.Climate, 22, 2199-2215, doi: 10.1175/2008JCLI2527.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, A., Feng, Q., Fu, G. et al. Recent changes in precipitation extremes in the Heihe River basin, Northwest China. Adv. Atmos. Sci. 32, 1391–1406 (2015). https://doi.org/10.1007/s00376-015-4199-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-4199-3

Key words

Navigation