Skip to main content
Log in

Seasonal variation and physical properties of the cloud system over southeastern China derived from CloudSat products

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Based on the National Centers for Environmental Prediction (NCEP) and Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) data and CloudSat products, the seasonal variations of the cloud properties, vertical occurrence frequency, and ice water content of clouds over southeastern China were investigated in this study. In the CloudSat data, a significant alternation in high or low cloud patterns was observed from winter to summer over southeastern China. It was found that the East Asian Summer Monsoon (EASM) circulation and its transport of moisture leads to a conditional instability, which benefits the local upward motion in summer, and thereby results in an increased amount of high cloud. The deep convective cloud centers were found to coincide well with the northward march of the EASM, while cirrus lagged slightly behind the convection center and coincided well with the outflow and meridional wind divergence of the EASM. Analysis of the radiative heating rates revealed that both the plentiful summer moisture and higher clouds are effective in destabilizing the atmosphere. Moreover, clouds heat the mid-troposphere and the cloud radiative heating is balanced by adiabatic cooling through upward motion, which causes meridional wind by the Sverdrup balance. The cloud heating-forced circulation was observed to coincide well with the EASM circulation, serving as a positive effect on EASM circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arking, A., 1991: The radiative effects of clouds and their impact on climate. Bull. Amer. Meteor. Soc., 72, 795–813.

    Article  Google Scholar 

  • Cess, R. D., M. Zhang, B. A. Wielicki, D. F. Young, X.-L. Zhou, and Y. Nikitenko, 2001: The influence of 1998 El Niño upon cloud-radiative forcing over the Pacific warm pool. J. Climate, 14, 2129–2137.

    Article  Google Scholar 

  • Chen, H., T. Zhou, R. B. Neale, X. Wu, and G. J. Zhang, 2010: Performance of the new NCAR CAM3.5 in East Asian summer monsoon simulations: Sensitivity to modifications of the convection scheme. J. Climate, 23, 3657–3675.

    Article  Google Scholar 

  • Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142.

    Article  Google Scholar 

  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud-climate feedback. Geophys. Res. Lett., 29, doi: 10.1029/2002GL015835.

    Google Scholar 

  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 1281–1304.

    Article  Google Scholar 

  • Hartmann, D. L., J. R. Holton, and Q. Fu, 2001: The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophys. Res. Lett., 28, 1969–1972.

    Article  Google Scholar 

  • Houze, R. A., 1994: Cloud Dynamics. 2nd ed, Academic Press, San Diego, 573 pp.

    Google Scholar 

  • Huang, B., and Z.-Z. Hu., 2007: Cloud-SST feedback in southeastern tropical Atlantic anomalous events. J. Geophys. Res., 112, doi: 10.1029/2006JC003626.

    Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.

    Article  Google Scholar 

  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 1587–1606.

    Article  Google Scholar 

  • L’Ecuyer, T. S., and J. H. Jiang, 2010: Touring the atmosphere aboard the A-Train. Physics Today, 63(7), 36–41, doi: 10.1063/1.3463626.

    Article  Google Scholar 

  • L’Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P.W. Stackhouse Jr., 2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res., 113, doi: 10.1029/2008JD009951.

    Google Scholar 

  • Lin, W., M. Zhang, and N. G. Loeb, 2009: Seasonal variation of the physical properties of marine boundary layer clouds off the California coast. J. Climate, 22, 2624–2638.

    Article  Google Scholar 

  • Luo, Y., R. Zhang, and H. Wang, 2009: Comparing occurrences and vertical structures of hydrometeors between eastern China and the Indian monsoon region using CloudSat/CALIPSO data. J. Climate, 22, 1052–1064.

    Article  Google Scholar 

  • Mace, G., 2007: Level 2GEOPROF product process description and interface control document algorithm version 5.3. [Available online at http://www.cloudsat.cira.colostate.edu.]

    Google Scholar 

  • Mace, G., and Coauthors, 2007: Level 2 Radar-Lidar GEOPROF Product Version 1.0 Process Description and Interface Control Document. JPL, Pasadena, USA, 1–20.

    Google Scholar 

  • Mather, J. H., S. A. McFarlane, M. A. Miller, and K. L. Johnson, 2007: Cloud properties and associated radiative heating rates in the tropical western Pacific. J. Geophys. Res., 112, doi: 10.1029/2006JD007555.

    Google Scholar 

  • McFarlane, S. A., J. H. Mather, and T. P. Ackerman, 2007: Analysis of tropical radiative heating profiles: A comparison of models and observations. J. Geophys. Res., 112(D14), doi: 10.1029/2006JD008290.

    Google Scholar 

  • Norris, J. R., and C. B. Leovy, 1994: Interannual variability in stratiform cloudiness and sea surface temperature. J. Climate., 7(12), 1915–1925.

    Article  Google Scholar 

  • Rajeevan, M., and J. Sriviasan, 2000: Net cloud radiative forcing at the top of the atmosphere in the Asian monsoon region. J. Climate, 13, 650–657.

    Article  Google Scholar 

  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 315, 27–32.

    Article  Google Scholar 

  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 3192–3211.

    Article  Google Scholar 

  • Rossow, W. B. and R. A. Schiffer, 1991: ISCCP Cloud Data Products. Bull. Amer. Meteor. Soc., 72, 2–20.

    Article  Google Scholar 

  • Sassen, K., and Z. Wang, 2008: Classifying clouds around the globe with the CloudSat radar: 1-year of results, Geophys. Res. Lett., 35, L04805, doi:10.1029/2007GL032591.

    Google Scholar 

  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-train. Bull. Amer. Meteor. Soc., 83, 1771–1790.

    Article  Google Scholar 

  • Wang, B., I.-S. Kang, and J.-Y. Lee, 2004: Ensemble simulations of Asian-Australian monsoon variability by 11 AGCMs. J. Climate, 15, 803–818.

    Article  Google Scholar 

  • Wang, W.-C., W. Gong, W.-S. Kau, C.-T. Chen, H.-H. Hsu, and C.-H. Tu, 2004: Characteristics of cloud radiation forcing over East China. J. Climate, 17, 845–853.

    Article  Google Scholar 

  • Wang, Z., and K. Sassen, 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40, 1665–1682.

    Article  Google Scholar 

  • Wang, Z., and K. Sassen, cited 2007: Level 2 cloud scenario classification product process description and interface control document, version 5.0. [Available online at http://www.cloudsat.cira.colostate.edu.]

    Google Scholar 

  • Xi, B., X. Dong, P. Minnis, and M. M. Khaiyer, 2010: A 10 year climatology of cloud cover and vertical distribution derived from both surface and GOES observations over the DOE ARM SGP site. J. Geophys. Res., 115(D12), doi: 10.1029/2009JD012800.

    Google Scholar 

  • Xie, P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840–858.

    Article  Google Scholar 

  • Ye, D. Z., and G. Yang, 1979: Mean meridional circulations over East Asia and the Pacific Ocean. I: Summer; II: Winter. Sci. Atmos. Sinica, 3, 299–305. (in Chinese)

    Google Scholar 

  • Yu, R., Y. Yu, and M. Zhang, 2001: Comparing cloud radiative properties between the eastern China and the Indian monsoon region. Adv. Atmos. Sci., 18, 1090–1102, doi: 10.1007/soo376-001-0025-1.

    Article  Google Scholar 

  • Yu, R., B. Wang, and T. Zhou, 2004: Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau. J. Climate., 17(13), 2702–2713.

    Article  Google Scholar 

  • Zhang, C., and M.-D. Chou, 1999: Variability of water vapor, infrared radiative cooling, and atmospheric instability for deep convection in the equatorial western Pacific. J. Atmos. Sci., 56, 711–723.

    Article  Google Scholar 

  • Zhou, T., and Z. Li, 2002: Simulation of the East Asian summer monsoon using a variable resolution atmospheric GCM. Climate Dyn., 19(2), 167–180.

    Article  Google Scholar 

  • Zhou, T., B. Wu, and B. Wang, 2009a: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian monsoon?. J. Climate, 22, 1159–1173.

    Article  Google Scholar 

  • Zhou, T., and Coauthors, 2009b: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 2199–2215.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Zhou, T. Seasonal variation and physical properties of the cloud system over southeastern China derived from CloudSat products. Adv. Atmos. Sci. 32, 659–670 (2015). https://doi.org/10.1007/s00376-014-4070-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-4070-y

Key words

Navigation