Skip to main content
Log in

Attributing analysis on the model bias in surface temperature in the climate system model FGOALS-s2 through a process-based decomposition method

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This study uses the coupled atmosphere-surface climate feedback-response analysis method (CFRAM) to analyze the surface temperature biases in the Flexible Global Ocean-Atmosphere-Land System model, spectral version 2 (FGOALS-s2) in January and July. The process-based decomposition of the surface temperature biases, defined as the difference between the model and ERA-Interim during 1979–2005, enables us to attribute the model surface temperature biases to individual radiative processes including ozone, water vapor, cloud, and surface albedo; and non-radiative processes including surface sensible and latent heat fluxes, and dynamic processes at the surface and in the atmosphere. The results show that significant model surface temperature biases are almost globally present, are generally larger over land than over oceans, and are relatively larger in summer than in winter. Relative to the model biases in non-radiative processes, which tend to dominate the surface temperature biases in most parts of the world, biases in radiative processes are much smaller, except in the sub-polar Antarctic region where the cold biases from the much overestimated surface albedo are compensated for by the warm biases from nonradiative processes. The larger biases in non-radiative processes mainly lie in surface heat fluxes and in surface dynamics, which are twice as large in the Southern Hemisphere as in the Northern Hemisphere and always tend to compensate for each other. In particular, the upward/downward heat fluxes are systematically underestimated/overestimated in most parts of the world, and are mainly compensated for by surface dynamic processes including the increased heat storage in deep oceans across the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bao, Q., G. X. Wu, Y. M. Liu, J. Yang, Z. Z. Wang, and T. J. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27, 1131–1142, doi: 10.1007/s00376-010-9177-1.

    Article  Google Scholar 

  • Bao, Q., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALSs2. Adv. Atmos. Sci., 30, 561–576, doi: 10.1007/s00376-012-2113-9.

    Article  Google Scholar 

  • Cai, M., and J. H. Lu, 2009: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: Method demonstrations and comparisons. Climate Dyn., 32, 887–900.

    Article  Google Scholar 

  • Cai, M., and K. K. Tung, 2012: Robustness of dynamical feedbacks from radiative forcing: 2% solar versus 2×CO2 experiments in an idealized GCM. J. Atmos. Sci., 69, 2256–2271.

    Article  Google Scholar 

  • Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16 601–16 615.

    Article  Google Scholar 

  • Chapman, W. L., and J. E. Walsh, 2007: Simulations of Arctic temperature and pressure by global coupled models. J. Climate, 20, 609–632.

    Article  Google Scholar 

  • Collins, W. D., and Coauthors, 2006: The community climate system model version 3 (CCSM3). J. Climate, 19, 2122–2143.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.

    Article  Google Scholar 

  • Deng, Y., T. W. Park, and M. Cai, 2013: Radiative and dynamical forcing of the surface and atmospheric temperature anomalies associated with the northern annular mode. J. Climate, 26, 5124–5138.

    Article  Google Scholar 

  • Dessler, A. E., Z. Zhang, and P. Yang, 2008: Water-vapor climate feedback inferred from climate fluctuations, 2003–2008. Geophys. Res. Lett., 35, L20704, doi: 10.1029/2008GL035333.

    Article  Google Scholar 

  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 2139–2156.

    Article  Google Scholar 

  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 2008–2025.

    Article  Google Scholar 

  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441–475.

    Article  Google Scholar 

  • Huang, W. Y., B. Wang, L. J. Li, and Y. Q. Yu, 2014: Improvements in LICOM2. Part II: Arctic Circulation. J. Atmos. Ocea. Tech., 31, 233–245.

    Article  Google Scholar 

  • Kharin, V. V., F. W. Zwiers, X. B. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 1419–1444.

    Article  Google Scholar 

  • Kimoto, M., 2005: Simulated change of the East Asian circulation under global warming scenario. Geophys. Res. Lett., 32, doi: 10.1029/2005GL023383.

  • Li, G. Q., S. P. Harrison, P. J. Bartlein, K. Izumi, and I. C. Prentice, 2013a: Precipitation scaling with temperature in warm and cold climates: An analysis of CMIP5 simulations. Geophys. Res. Lett., 40, 4018–4024, doi: 10.1002/grl.50730.

    Article  Google Scholar 

  • Li, L. J., and Coauthors, 2013b: The flexible global ocean-atmosphere-land system model, grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543–560, doi: 10.1007/s00376-012-2140-6.

    Article  Google Scholar 

  • Lin, P. F., Y. Q. Yu, and H. L. Liu, 2013a: Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2. Adv. Atmos. Sci., 30, 175–192, doi: 10.1007/s00376-012-2042-7.

    Article  Google Scholar 

  • Lin, P. F., Y. Q. Yu, and H. L. Liu, 2013b: Oceanic climatology in the coupled model FGOALS-g2: Improvements and biases. Adv. Atmos. Sci., 30, 819–840, doi: 10.1007/s00376-012-2137-1.

    Article  Google Scholar 

  • Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorologica Sinica, 26, 318–329.

    Article  Google Scholar 

  • Lu, J. H., and M. Cai, 2009: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation. Climate Dyn., 32, 873–885.

    Article  Google Scholar 

  • Lu, J. H., and M. Cai, 2010: Quantifying contributions to polar warming amplification in an idealized coupled general circulation model. Climate Dyn., 34, 669–687.

    Article  Google Scholar 

  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM), NCAR Tech. Note TN-461+STR, 174 pp.

    Google Scholar 

  • Park, T. W., Y. Deng, M. Cai, J. H. Jeong, and R. Zhou, 2013: A dissection of the surface temperature biases in the Community Earth System Model. Climate Dyn., doi: 10.1007/s00382-013-2029-9.

    Google Scholar 

  • Randall, D. A., and Coauthors, 2007: Climate Models and Their Evaluation. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

    Google Scholar 

  • Solomon, S., and Coauthors, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

    Google Scholar 

  • Sun, H. C., G. Q. Zhou, and Q. C. Zeng, 2012: Assessments of the climate system model (CAS-ESM-C) using IAP AGCM4 as its atmospheric component. Chinese J. Atmos. Sci., 36, 215–233. (in Chinese)

    Google Scholar 

  • Taylor, P. C., M. Cai, A. Hu, J. Meehl, W. Washington, and G. J. Zhang, 2013: A decomposition of feedback contributions to polar warming amplification. J. Climate, 26, 7023–7043.

    Article  Google Scholar 

  • Wetherald, R. T., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45, 1397–1416.

    Article  Google Scholar 

  • Wu, G. X., H. Liu, Y. C. Zhao, and W. P. Li, 1996: A nine-layer atmospheric general circulation model and its performance. Adv. Atmos. Sci., 13, 1–18.

    Article  Google Scholar 

  • Xu, S. M., and Coauthors, 2013: Simulation of sea ice in FGOALS-g2: Climatology and late 20th century changes. Adv. Atmos. Sci., 30, 658–673, doi: 10.1007/s00376-013-2158-4.

    Article  Google Scholar 

  • Zhang, L. X., and T. J. Zhou, 2014: An assessment of improvements in global monsoon precipitation simulation in FGOALS-s2. Adv. Atmos. Sci., 31, 165–178, doi: 10.1007/s00376-013-2164-6.

    Article  Google Scholar 

  • Zhou, T. J., and R. C. Yu, 2006: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19, 5843–5858.

    Article  Google Scholar 

  • Zhou, T. J., and Coauthors, 2005: The climate system model FGOALS-s using LASG/IAP spectral AGCM SAMIL as its atmospheric component. Acta Meteorologica Sinica, 63, 702–715.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongcai Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ren, R., Cai, M. et al. Attributing analysis on the model bias in surface temperature in the climate system model FGOALS-s2 through a process-based decomposition method. Adv. Atmos. Sci. 32, 457–469 (2015). https://doi.org/10.1007/s00376-014-4061-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-4061-z

Key words

Navigation