Skip to main content
Log in

Analysis of the variability of canopy resistance over a desert steppe site in Inner Mongolia, China

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Canopy resistance substantially affects the partitioning of available energy over vegetated surfaces. This study analyzed the variability of canopy resistance and associated driving environmental factors over a desert steppe site in Inner Mongolia, China, through the use of eddy-flux and meteorological data collected from 2008 to 2010. Distinct seasonal and interannual variabilities in canopy resistance were identified within those three years, and these variabilities were controlled primarily by precipitation. Strong interannual variability was found in vapor pressure deficit (VPD), similar to that of air temperature. Based on the principal component regression method, the analysis of the relative contribution of five major environmental factors [soil-water content (SWC), leaf-area index (LAI), photosynthetically active radiation (K p), VPD, and air temperature] to canopy resistance showed that the canopy-resistance variation was most responsive to SWC (with > 35% contribution), followed by LAI, especially for water-stressed soil conditions (> 20% influence), and VPD (consistently with an influence of approximately 20%). Canopy-resistance variations did not respond to K p due to the small interannual variability in K p during the three years. These analyses were used to develop a new exponential function of water stress for the widely used Jarvis scheme, which substantially improved the calculation of canopy resistance and latent heat fluxes, especially for moist and wet soils, and effectively reduced the high bias in evaporation estimated by the original Jarvis scheme. This study highlighted the important control of canopy resistance on plant evaporation and growth for the investigated desert steppe site with a relatively low LAI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Wahab, S. A., C. S. Bakheit, and S. M. Al-Alawi, 2005: Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environ. Modell. Softw., 20, 1263–1271.

    Article  Google Scholar 

  • Aires, L. M., C. A. Pio, and J. S. Pereira, 2008: The effect of drought on energy and water vapour exchange above a mediterranean C3/C4 grassland in Southern Portugal. Agricultural and Forest Meteorology, 148, 565–579.

    Article  Google Scholar 

  • Alfieri, J. G., P. D. Blanken, D. N. Yates, and K. Steffen, 2007: Variability in the environmental factors driving evapotranspiration from a grazed rangeland during severe drought conditions. J. Hydrometeor., 8, 207–220.

    Article  Google Scholar 

  • Alfieri, J. G., and Coauthors, 2008: Estimation of the minimum canopy resistance for croplands and grasslands using data from the 2002 International H2O Project. Mon. Wea. Rev., 136, 4452–4469.

    Article  Google Scholar 

  • Amer, K. H., and J. L. Hatfield, 2004: Canopy resistance as affected by soil and meteorological factors in potato. Agronomy Journal, 96, 978–985.

    Article  Google Scholar 

  • Avissar, R., P. Avissar, Y. Mahrer, and B. M. Bravdo, 1985: A model to simulate response of plant stomata to environmental conditions. Agricultural and Forest Meteorology, 34, 21–29.

    Article  Google Scholar 

  • Ball, J., I. Woodrow, and J. Berry, 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Prog. Photosynthesis Res. Int. Congress 7th, Providence. 10–15 Aug 1986. Vol. 4. Kluwer, Boston, 221–224.

    Google Scholar 

  • Blanken, P. D., and Coauthors, 1997: Energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components. J. Geophys. Res., 102(D24), 28 915–28 928.

    Article  Google Scholar 

  • Bosilovich, M. G., and W. Y. Sun, 1995: Formulation and verification of a land surface parameterization for atmospheric models. Bound.-Layer Meteor., 73, 321–341.

    Article  Google Scholar 

  • Burba, G. G., and S. B. Verma, 2005: Seasonal and interannual variability in evapotranspiration of native tallgrass prairie and cultivated wheat ecosystems. Agricultural and Forest Meteorology, 135, 190–201.

    Article  Google Scholar 

  • Calvet, J. C., J. Noilhan, J. L. Roujean, P. Bessemoulin, M. Cabelguenne, A. Olioso, and J. P. Wigneron, 1998: An interactive vegetation SVAT model tested against data from six contrasting sites. Agricultural and Forest Meteorology, 92, 73–95.

    Article  Google Scholar 

  • Charusombat, U., and Coauthors, 2010: Evaluating a new deposition velocity module in the Noah land-surface model. Bound.-Layer Meteor., 137, 271–290.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.

    Article  Google Scholar 

  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 7251–7268.

    Article  Google Scholar 

  • Chen, F., T. Warner, and K. Manning, 2001: Sensitivity of orographic moist convection to landscape variability: A study of the Buffalo Creek, Colorado, flash-flood case of 1996. J. Atmos. Sci., 58, 3204–3223.

    Article  Google Scholar 

  • Chen, F., D. N. Yates, H. Nagai, M. A. LeMone, K. Ikeda, and R. L. Grossman, 2003: Land-surface heterogeneity in the Cooperative Atmosphere Surface Exchange Study (CASES-97). Part-I: Comparing modeled surface flux maps with surface-tower and aircraft measurements. J. Hydrometeor., 4, 196–218.

    Article  Google Scholar 

  • Chen, F., and Coauthors, 2007: Description and evaluation of the characteristics of the NCAR High-resolution land data assimilation system. J. Appl. Meteor. Climatol., 46, 694–713, doi: 10.1175/JAM2463.1.

    Article  Google Scholar 

  • Cox, P. M., C. Huntingford, and R. J. Harding, 1999a: A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrol., 212–213, 79–94.

    Google Scholar 

  • Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J. Smith, 1999b: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15, 183–203.

    Article  Google Scholar 

  • Dai, Y. J., and Coauthors, 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1023.

    Article  Google Scholar 

  • Dickinson, R. E., A. Henderson-Sellers, C. Rosenzweig, and P. J. Sellers, 1991: Evapotranspiration models with canopy resistance for use in climate models, a review. Agricultural and Forest Meteorology, 54, 373–388.

    Article  Google Scholar 

  • Duan, Q. Y., S. Sorooshian, and V. Gupta, 1992: Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res., 28(4), 1015–1031.

    Article  Google Scholar 

  • Duan, Q. Y., V. K. Gupta, and S. Sorooshian, 1993: Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3), 501–521.

    Article  Google Scholar 

  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, D22, doi: 10.1029/2002JD003296.

    Google Scholar 

  • Fekedulegn, B. D., and Coauthors, 2002: Coping with multicollinearity: An example on application of principal components regression in dendroecology. Research Paper NE-721, USDA Forest Service, Northeastern Research Station, Newton Square, PA, 43 pp.

    Google Scholar 

  • Frank, A. B., 2003: Evapotranspiration from northern semiarid grasslands. Agron Journal, 95, 1504–1509.

    Article  Google Scholar 

  • Gibbens, R. P., and J. M. Lenz, 2001: Root systems of some Chihuahuan Desert plants. J. Arid Environ., 49, 221–263.

    Article  Google Scholar 

  • Gosz, J. R., 1993: Ecotone hierarchies. Ecol. Appl., 3, 369–376.

    Article  Google Scholar 

  • Holt, T., D. Niyogi, F. Chen, K. Manning, M. A. LeMone, and A. Qureshi, 2006: Effect of land-atmosphere interactions on the IHOP 24–25 May 2002 convection case. Mon. Wea. Rev, 134, 113–133.

    Article  Google Scholar 

  • Jarvis, P. G., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 273, 593–610.

    Article  Google Scholar 

  • Jarvis, P. G., and K. G. Mcnaughton, 1986: Stomatal control of transpiration: Scaling up from leaf to region. Advances in Ecological Research, 15, 1–49.

    Article  Google Scholar 

  • Kim, J., and S. B. Verma, 1991: Modeling canopy stomatal conductance in a temperate grassland ecosystem. Agricultural and Forest Meteorology, 55, 149–166.

    Article  Google Scholar 

  • Kumar, A., F. Chen, D. Niyogi, J. G. Alfieri, M. Ek, and K. Mitchell, 2011: Evaluation of a photosynthesis-based canopy resistance formulation in the Noah land-surface model. Bound.-Layer Meteor., 138, 263–284, doi: 10.1007/s10546-010-9559-z.

    Article  Google Scholar 

  • LeMone, M. A., F. Chen, J. G. Alfieri, M. Tewari, B. Geerts, Q. Miao, R. L. Grossman, and R. L. Coulter, 2007: Influence of land cover and soil moisture on the horizontal distribution of sensible and latent heat fluxes in southeast Kansas during IHOP 2002 and CASES-97. J. Hydrometeor., 8, 67–87.

    Article  Google Scholar 

  • LeMone, M. A., M. Tewari, F. Chen, J. G. Alfieri, and D. Niyogi, 2008: Evaluation of the Noah land-surface model using data from a fair-weather IHOP 2002 day with heterogeneous surface fluxes. Mon. Wea. Rev., 136, 4915–4941.

    Article  Google Scholar 

  • LeMone, M. A., F. Chen, M. Tewari, J. Dudhia, B. Geerts, Q. Miao, R. L. Coulter, and R. L. Grossman, 2010a: Simulating the IHOP 2002 fair-weather CBL with the WRF-ARW-Noah modeling system. Part I: Surface fluxes and CBL structure and evolution along the eastern track. Mon. Wea. Rev., 138, 722–744.

    Article  Google Scholar 

  • LeMone, M. A., F. Chen, M. Tewari, J. Dudhia, B. Geerts, Q. Miao, R. L. Coulter, and R. L. Grossman, 2010b: Simulating the IHOP 2002 fair-weather CBL with the WRF-ARW Noah modeling system. Part II: Structures from a Few Kilometers to 100 km across. Mon. Wea. Rev., 138, 745–764.

    Article  Google Scholar 

  • Leuning, R., 1990: Modelling stomatal behavior and photosynthesis of Eucalyptus grandis. Functional Plant Biology, 17, 150–175.

    Google Scholar 

  • Li, S. G., C.-T. Lai, G. Lee, S. Shimoda, T. Yokoyama, A. Higuchi, and T. Oikawa, 2005: Evapotranspiration from a wet temperate grassland and its sensitivity to microenvironmental variables. Hydrology Process, 19, 517–532.

    Article  Google Scholar 

  • Li, S. G., W. Eugster, J. Asanuma, A. Kotani, G. Davaa, D. Oyunbaatar, and M. Sugita, 2006: Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia. Agricultural and Forest Meteorology, 137, 89–106.

    Article  Google Scholar 

  • Liu, F. L., M. N. Andersen, and C. R. Jensen, 2009: Capability of the’ Ball-Berry’ model for predicting stomatal conductance and water use efficiency of potato leaves under different irrigation regimes. Scientia Horticulturae, 122, 346–354.

    Article  Google Scholar 

  • Marty. C., and R. Philipona, 2000: The clear-sky index to separate clear-sky from cloudy-sky situations in climate research. Geophys. Res. Lett., 27, 2649–2652.

    Article  Google Scholar 

  • Mascart, P., O. Taconet, J. P. Pinty, and M. B. Mehrez, 1991: Canopy resistance formulation and its effect in mesoscale models: a HAPEX perspective. Agricultural and Forest Meteorology, 54, 319–351.

    Article  Google Scholar 

  • Mielnick, P., W. A. Dugas, K. Mitchell, and K. Havstad, 2005: Long-term measurements of CO2 flux and evapotranspiration in a Chihuahuan desert grassland. J. Arid. Environ., 60, 423–436.

    Article  Google Scholar 

  • Monteith, J. L., 1965: Evaporation and environment. Symp. Soc. Exp. Biol., 19, 205–234.

    Google Scholar 

  • Monteith, J. L., and M. H. Unsworth, 1990: Principles of Environmental Physics, 2nd ed. Edward Arnold, London.

    Google Scholar 

  • Neilson, R. P., 1986: High-resolution climatic analysis and southwest biogeography. Science, 232, 27–34.

    Article  Google Scholar 

  • Niu, G. Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, doi: 10.1029/2010JD015139.

  • Niyogi, D., and Coauthors, 2009: Development and evaluation of a coupled photosynthesis-based gas exchange evapotranspiration model (GEM) for mesoscale weather forecasting applications. J. Appl. Meteor. Climate, 48, 394–368.

    Google Scholar 

  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536–549.

    Article  Google Scholar 

  • Ogink-Hendriks, M. J., 1995: Modelling surface conductance and transpiration of an oak forest in the Netherlands. Agricultural and Forest Meteorology, 74, 99–118.

    Article  Google Scholar 

  • Oliphant, A. J., and Coauthors, 2004: Heat storage and energy balance fluxes for a temperate deciduous forest. Agricultural and Forest Meteorology, 126, 185–201.

    Article  Google Scholar 

  • Papale, D., and Coauthors, 2006: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 3, 571–583.

    Article  Google Scholar 

  • Pleim, J. E., and A. J. Xiu, 1995: Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J. Appl. Meteor., 34, 16–32.

    Article  Google Scholar 

  • Ronda, R. J., H. A. R. de Bruin, and A. A. M. Holtslag, 2001: Representation of the canopy conductance in modeling the surface energy budget for low vegetation. J. Appl. Meteor., 40, 1431–1444.

    Article  Google Scholar 

  • Schlesinger, W. H., J. F. Reynolds, G. L. Cunningham, L. F. Huenneke, W. M. Jarrell, R. A. Virginia, and W. G. Whitford, 1990: Biological feedbacks in global desertification. Science, 247, 1043–1048.

    Article  Google Scholar 

  • Schulze, E. D., O. L. Lange, M. Evenari, L. Kappen, and U. Buschbom, 1974: The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions 1. A simulation of the daily course of stomatal resistance. Oecologia, 17, 159–170.

    Article  Google Scholar 

  • Sellers, P. J., and Coauthors, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9, 676–705.

    Article  Google Scholar 

  • Shuttleworth, W. J., and J. S. Wallace, 1985: Evaporation from sparse crops—An energy combination theory. Quart. J. Roy. Meteor. Soc., 111, 839–855.

    Article  Google Scholar 

  • Sridhar, V., R. L. Elliott, F. Chen, and J. A. Brotzge, 2002: Validation of the NOAH-OSU land surface model using surface flux measurements in Oklahoma. J. Geophys. Res., 107(D20), ACL 3-1–ACL 3-18, doi: 10.1029/2001JD001306.

    Google Scholar 

  • Stewart, J. B., 1988: Modelling surface conductance of pine forest. Agricultural and Forest Meteorology, 43, 19–35.

    Article  Google Scholar 

  • Stewart, J. B., and S. B. Verma, 1992: Comparison of surface fluxes and conductances at two contrasting sites within the FIFE area. J. Geophys. Res., 97(D17), 18 623–18 628, doi: 10.1029/92JD00256.

    Article  Google Scholar 

  • Todorovic, M., 1999: Single-layer evapotranspiration model with variable canopy resistance. Journal of Irrigation and Drainage Engineering, 125, 235–245.

    Article  Google Scholar 

  • Trier, S. B., F. Chen, and K. W. Manning, 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132, 2954–2976.

    Article  Google Scholar 

  • Trier, S. B., F. Chen, K. W. Manning, M. A. LeMone, and C. A. Davis, 2008: Sensitivity of the PBL and precipitation in 12-day simulations of warm-season convection using different land surface models and soil wetness conditions. Mon. Wea. Rev., 136, 2321–2343.

    Article  Google Scholar 

  • Trier, S. B., M. A. LeMone, F. Chen, and K. W. Manning, 2011: Effects of surface heat and moisture exchange on ARW-WRF warm-season precipitation forecasts over the central United States. Wea. Forecasting, 26, 3–25.

    Article  Google Scholar 

  • Twine, T. E., and Coauthors, 2000: Correcting eddy-covariance flux underestimates over a grassland. Agricultural and Forest Meteorology, 103, 279–300.

    Article  Google Scholar 

  • Viterbo, P., and A. C. M. Beljaars, 1995: An improved land-surface parameterization scheme in the ECMWF model and its validation. J. Climate, 8, 2716–2748.

    Article  Google Scholar 

  • Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85–100.

    Article  Google Scholar 

  • Wever, L. A., L. B. Flanagan, P. J. Carlson, 2002: Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agricultural and Forest Meteorology, 112(1), 31–49.

    Article  Google Scholar 

  • Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99(1), 127–150.

    Article  Google Scholar 

  • Wilson, K., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113(1–4), 223–243.

    Article  Google Scholar 

  • Wu, Z. Y., and Coauthors, 2011: Evaluating the calculated dry deposition velocities of reactive nitrogen oxides and ozone from two community models over a temperate deciduous forest. Atmos. Environ., 45(16), 2663–2674.

    Article  Google Scholar 

  • Wu, Z. Y, and Coauthors, 2012: Evaluation and improvements of two community models in simulating dry deposition velocities for peroxyacetyl nitrate (PAN) over a coniferous forest. J. Geophys. Res., 117, D04310, doi: 10.1029/2011JD016751.

    Google Scholar 

  • Yang, F. L., and G. S. Zhou, 2011: Characteristics and modeling of evapotranspiration over a temperate desert steppe in Inner Mongolia, China. J. Hydrol., 396, 139–147.

    Article  Google Scholar 

  • Yates, D. N., F. Chen, M. A. LeMone, R. Qualls, S. P. Oncley, R. L. Grossman, and E. A. Brandes, 2001: A cooperative atmosphere-surface exchange study (CASES) dataset for analyzing and parameterizing the effects of land surface heterogeneity on area-averaged surface heat fluxes. J. Appl. Meteor., 40, 921–937.

    Article  Google Scholar 

  • Zhang, F., G. S. Zhou, Y. Wang, F. L. Yang, and C. Nilsson, 2012: Evapotranspiration and crop coefficient for a temperate desert steppe ecosystem using eddy covariance in Inner Mongolia, China. Hydrology Process, 26(3), 379–386.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangsheng Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Zhou, G., Chen, F. et al. Analysis of the variability of canopy resistance over a desert steppe site in Inner Mongolia, China. Adv. Atmos. Sci. 31, 681–692 (2014). https://doi.org/10.1007/s00376-013-3071-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-3071-6

Key words

Navigation