Skip to main content
Log in

Improvement of 6–15 day precipitation forecasts using a time-lagged ensemble method

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A time-lagged ensemble method is used to improve 6–15 day precipitation forecasts from the Beijing Climate Center Atmospheric General Circulation Model, version 2.0.1. The approach averages the deterministic predictions of precipitation from the most recent model run and from earlier runs, all at the same forecast valid time. This lagged average forecast (LAF) method assigns equal weight to each ensemble member and produces a forecast by taking the ensemble mean. Our analyses of the Equitable Threat Score, the Hanssen and Kuipers Score, and the frequency bias indicate that the LAF using five members at time-lagged intervals of 6 h improves 6–15 day forecasts of precipitation frequency above 1 mm d−1 and 5 mm d−1 in many regions of China, and is more effective than the LAF method with selection of the time-lagged interval of 12 or 24 h between ensemble members. In particular, significant improvements are seen over regions where the frequencies of rainfall days are higher than about 40%–50% in the summer season; these regions include northeastern and central to southern China, and the southeastern Tibetan Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, H., R. Yu, J. Li, X. Xin, Z. Wang, and T. Wu, 2011: The coherent interdecadal changes of East Asia climate in midsummer simulated by BCC AGCM2.0.1. Climate Dyn., doi: 10.1007/s00382-011-1154-6.

    Google Scholar 

  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367–374.

    Article  Google Scholar 

  • Ding, Y., and G. Hu, 2003: A study on water vapor budget over China during the 1998 severe flood periods. Acta Meteorologica Sinica, 61(2), 129–145. (in Chinese)

    Google Scholar 

  • Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 2461–2480.

    Article  Google Scholar 

  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550–560.

    Article  Google Scholar 

  • Hamill, T. M., and S. J. Colucci, 1998: Evaluation of Eta-RSM ensemble probabilistic precipitation forecasts. Mon. Wea. Rev., 126, 711–724.

    Article  Google Scholar 

  • Hanssen, A. W., and W. J. A. Kuipers, 1965: On the relationship between the frequency of rain and various meteorological parameters. Mededelingen en verhandelingen, 81, 2–15.

    Google Scholar 

  • Jie, W., and T. Wu, 2010: Hindcast for the 1998 Summer Heavy Precipitation in the Yangtze and Huaihe River valley using BCC AGCM2.0.1 model. Chinese J. Atmos. Sci., 34(5), 962–978. (in Chinese)

    Google Scholar 

  • Krishnamurti, T. N., C. M. Kishtawal, Z. Zhang, T. LaRow, D. Bachiochi, E. Williford, S. Gadgil, and S. Surendran, 2000: Multimodel ensemble forecasts for weather and seasonal climate. J. Climate, 13, 4196–4216.

    Article  Google Scholar 

  • Liu, Y., 2003: Prediction of monthly-seasonal precipitation using coupled SVD patterns between soil moisture and subsequent precipitation. Geophys. Res. Lett., 30, 1827, doi: 10.1029/2003GL017709.

    Article  Google Scholar 

  • Lu, C., H. Yuan, B. E. Schwartz, and S. G. Benjamin, 2007: Short-range numerical weather prediction using time-lagged ensembles. Wea. Forecasting, 22, 580–595.

    Article  Google Scholar 

  • Mullen, S. L., and R. Buizza, 2002: The impact of horizontal resolution and ensemble size on probabilistic forecasts of precipitation by the ECMWF ensemble prediction system. Wea. Forecasting, 17, 173–191.

    Article  Google Scholar 

  • Peel, S., and L. J. Wilson, 2008: A diagnostic verification of the precipitation forecasts produced by the Canadian ensemble prediction system. Wea. Forecasting, 23, 596–616.

    Article  Google Scholar 

  • Qin, J., and H. M. van den Dool, 1996: Simple extensions of an NWP model. Mon. Wea. Rev., 124, 277–287.

    Article  Google Scholar 

  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570–575.

    Article  Google Scholar 

  • Schmeits, J. M., and K. J. Kok, 2010: A comparison between raw ensemble output, (modified) Bayesian model averaging, and extended logistic regression using ECMWF ensemble precipitation reforecasts. Mon. Wea. Rev., 138, 4199–4211.

    Article  Google Scholar 

  • Sivillo, J. K., J. E. Ahlquist, and Z. Toth, 1997: An ensemble forecasting primer. Wea. Forecasting, 12, 809–818.

    Article  Google Scholar 

  • Stensrud, D. J., and N. Yussouf, 2007: Reliable probabilistic quantitative precipitation forecasts from a short-range ensemble forecasting system. Wea. Forecasting, 22, 3–17.

    Article  Google Scholar 

  • van den Dool, H., and L. Rukhovets, 1994: On the weights for an ensemble-averaged 6–10 day forecast. Wea. Forecasting, 9, 457–465.

    Article  Google Scholar 

  • Vitart, F., and F. Molteni, 2009: Dynamical extended-range prediction of early monsoon rainfall over India. Mon. Wea. Rev., 137, 1480–1492.

    Article  Google Scholar 

  • Walser, A., D. Luthi, and C. Schar, 2004: Predictability of precipitation in a cloud-resolving model. Mon. Wea. Rev., 132, 560–577.

    Article  Google Scholar 

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

    Google Scholar 

  • Wu, T., and Coauthors, 2008: A modified dynamic framework for atmospheric spectral model and its application. J. Atmos. Sci., 65, 2235–2253.

    Article  Google Scholar 

  • Wu, T., and Coauthors, 2010: The Beijing climate center for atmospheric general circulation model (BCC-AGCM2.0.1): Description and its performance for the present-day climate. Climate. Dyn., 34, 123–147.

    Article  Google Scholar 

  • Yuan, H., S. L. Mullen, X. Gao, S. Sorooshian, J. Du, and H. H. Juang, 2007: Short-range probabilistic quantitative precipitation forecasts over the southwest United States by the RSM ensemble system. Mon. Wea. Rev., 135, 1685–1698.

    Article  Google Scholar 

  • Yuan, H., C. Lu, J. A. McGinley, P. J. Schultz, B. D. Jamison, L. Wharton, and C. J. Anderson, 2009: Evaluation of shortrange quantitative precipitation forecasts from a time-lagged multimodel ensemble. Wea. Forecasting, 24, 18–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongwen Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jie, W., Wu, T., Wang, J. et al. Improvement of 6–15 day precipitation forecasts using a time-lagged ensemble method. Adv. Atmos. Sci. 31, 293–304 (2014). https://doi.org/10.1007/s00376-013-3037-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-3037-8

Key words

Navigation