Skip to main content
Log in

Long-term behaviors of two versions of FGOALS2 in preindustrial control simulations with implications for 20th century simulations

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Climate drift in preindustrial control (PICTL) simulations can lead to spurious climate trends and large uncertainties in historical and future climate simulations in coupled models. This study examined the longterm behaviors and stabilities of the PICTL simulations in the two versions of FGOALS2 (the Flexible Global Ocean-Atmosphere-Land System model Version 2), which have been submitted to the Coupled Model Intercomparison Project Phase 5 (CMIP5). As verified by examining time series of thermal fields and their linear trends, the PICTL simulations showed stable long-term integration behaviors and no obvious climate drift [the magnitudes of linear trends of SST were both less than 0.04°C (100 yr)−1] over multiple centuries. The changed SSTs in a century (that corresponded to the linear trends) were less than the standard deviations of annual mean values, which implied the internal variability was not affected. These trend values were less than 10% of those of global averaged SST from observations and historical runs during the periods of slow and rapid warming. Such stable long-term integration behaviors reduced the uncertainty of the estimation of global warming rates in the historical and future climate projections in the two versions of FGOALS2. Compared with the trends in the Northern Hemisphere, larger trends existed in the SST and sea ice extents at the middle to high latitudes of the Southern Hemisphere (SH). To estimate the historical and future climate trends in the SH or at some specific regions in FGOALS2, corrections needed to be carried out. The similar long-term behaviors in the two versions of FGOALS2 may be attributed to proper physical processes in the ocean model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, S. Levitus, Ed., NOAA Atlas NESDIS 62, U.S. Government Printing Office, Washington, D.C., 182pp.

  • Bao, Q., G. X. Wu, Y. M. Liu, J. Yang, Z. Z. Wang, and T. J. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27(5), 1131–1142, doi: 10.1007/s00376-010-9177-1.

    Article  Google Scholar 

  • Bao, Q., and Coauthors, 2013: The flexible global oceanatmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., doi: 10.1007/s00376-012-2113-9.

    Google Scholar 

  • Buhaug, Ø., and Coauthors, 2009: Second IMO GHG Study 2009. International maritime organization (IMO). London, UK, 240pp.

    Google Scholar 

  • Cai, W. J., and H. B. Gordon, 1999: Southern highlatitude ocean climate drift in a coupled model. J. Climate, 12, 132–146.

    Article  Google Scholar 

  • Cavalieri, D. J., and C. L. Parkinson, 2003: 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys. Res. Lett., 30(18), doi: 10.1029/2003GL018031.

    Google Scholar 

  • Cionni, I., and Coauthors, 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys., 11, 11267–11292, doi: 10.5194/acp-11-11267-2011.

    Article  Google Scholar 

  • Covey, C., P. J. Gleckler, T. J. Phillips, and D. C. Bader, 2006: Secular trends and climate drift in coupled ocean-atmosphere general circulation models. J. Geophys. Res., 111, D03107, doi: 10.1029/2005JD006009.

  • Fröhlich, C., and J. Lean, 2004: Solar radiative output and its variability: Evidence and mechanisms. Astronomy and Astrophysics Review, 12(4), 273–320. doi: 10.1007/s00159-004-0024-1.

    Article  Google Scholar 

  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the world ocean circulation experiment. J. Climate, 16, 696–705.

    Article  Google Scholar 

  • He, B., Q. Bao, J. Li, G. Wu, Y. Liu, X. Wang, and Z. Sun, 2013: Influences of external forcing changes on the summer cooling trend over East Asia. Climatic Change, doi: 10.1007/s10584-012-0592-4.

    Google Scholar 

  • Lamarque, F. J., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys., 10, 7017–7039. doi: 10.5194/acp-10-7017-2010

    Article  Google Scholar 

  • Li, L. J., and Coauthors, 2013: The flexible global oceanatmosphere-land system model version: FGOALSg2. Adv. Atmos. Sci., doi: 10.1007/s00376-012-2140-6.

    Google Scholar 

  • Lin, P. F., H. L. Liu, Y. Q. Yu, and X. H. Zhang, 2011: Response of sea surface temperature to chlorophyll-a concentration in the tropical Pacific: Annual mean, seasonal cycle and interannual variability. Adv. Atmos. Sci., 28(3), 492–510.

    Article  Google Scholar 

  • Lin, P. F., Y. Q. Yu, and H. L. Liu, 2013a: Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2. Adv. Atmos. Sci., 30, 175–192, doi: 10.1007/s00376-012-2042-7.

    Article  Google Scholar 

  • Lin, P. F., Y. Q. Yu, and H. L. Liu, 2013b: Oceanic climatology in the coupled model FGOALS-g2: Improvements and biases. Adv. Atmos. Sci., doi: 10.1007/s00376-012-2137-1.

    Google Scholar 

  • Liu, H. L., X. H. Zhang, W. Li, Y. Q. Yu, and R. C. Yu, 2004a: An eddy-permitting oceanic general circulation model and its preliminary evaluations. Adv. Atmos. Sci., 21, 675–690.

    Article  Google Scholar 

  • Liu, H. L., Y. Q. Yu, W. Li, and X. H. Zhang, 2004b: Manual for LASG/IAP Climate System Ocean Model (LICOM1.0). Science Press, Beijing, 1–128. (in Chinese)

    Google Scholar 

  • Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2.0. Acta Meteorologica Sinica, 26, 318–329.

    Article  Google Scholar 

  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, S. Levitus, Ed., NOAA Atlas NESDIS 61, U.S. Government Printing Office, Washington, D.C., 182pp.

  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, New York, USA, 996pp.

    Google Scholar 

  • Sausen, R., K. Barthel, and K. Hasselmann, 1988: Coupled ocean-atmosphere models with flux correction. Climate Dyn., 2, 145–163.

    Article  Google Scholar 

  • Sen Gupta, A., L. C. Muir, J. N. Brown, S. J. Phipps, P. J. Durack, D. Monselesan, and S. E. Wijffels, 2012: Climate drift in the CMIP3 models. J. Climate, doi: 10.1175/jcli-d-11-00312.1.

    Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296.

    Article  Google Scholar 

  • Taylor, K. E, R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi: http://dx.doi.org/10.1175/BAMS-D-11-00094.1.

    Article  Google Scholar 

  • Wang, B., H. Wan, Z. Z. Ji, X. H. Zhang, R. C. Yu, Y. Q. Yu, and H. L. Liu, 2004: Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Science in China (A), 47(Suppl.), 4–21.

    Article  Google Scholar 

  • Xue, Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normals during 1871–2000. J. Climate, 16, 1601–1612.

    Article  Google Scholar 

  • Yu, Y. Q., X. H. Zhang, and Y. F. Guo, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444–455.

    Article  Google Scholar 

  • Yu, Y. Q., W. P. Zheng, X. H. Zhang, and H. L. Liu, 2007: LASG coupled climate system model FGCM-1.0. Chinese Journal of Geophysics, 50(6), 1677–1687.(in Chinese)

    Google Scholar 

  • Yu, Y. Q., W. P. Zheng, B. Wang, H. L. Liu, and J. P. Liu, 2011: Versions g1.0 and g1.1 of the LASG/IAP flexible global ocean-atmosphere-land system model, Adv. Atmos. Sci., 28(1), 99–117, doi: 10.1007/s00376-010-9112-5.

    Article  Google Scholar 

  • Zheng, Y., and B. S. Giese, 2009: Ocean heat transport in simple ocean data assimilation: Structure and mechanisms, J. Geophys. Res., 114, C11009, doi: 10.1029/2008JC005190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Liu  (刘海龙).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, P., Liu, H., Yu, Y. et al. Long-term behaviors of two versions of FGOALS2 in preindustrial control simulations with implications for 20th century simulations. Adv. Atmos. Sci. 30, 577–592 (2013). https://doi.org/10.1007/s00376-013-2186-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2186-0

Keywords

Navigation