Skip to main content
Log in

Impacts of snow cover on vegetation phenology in the arctic from satellite data

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The dynamics of snow cover is considered an essential factor in phenological changes in Arctic tundra and other northern biomes. The Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra satellite data were selected to monitor the spatial and temporal heterogeneity of vegetation phenology and the timing of snow cover in western Arctic Russia (the Yamal Peninsula) during the period 2000–10. The magnitude of changes in vegetation phenology and the timing of snow cover were highly heterogeneous across latitudinal gradients and vegetation types in western Arctic Russia. There were identical latitudinal gradients for “start of season” (SOS) (r 2 = 0.982, p < 0.0001), “end of season” (EOS) (r 2 = 0.938, p < 0.0001), and “last day of snow cover” (LSC) (r 2 = 0.984, p < 0.0001), while slightly weaker relationships between latitudinal gradients and “first day of snow cover” (FSC) were observed (r 2 = 0.48, p < 0.0042). Delayed SOS and FSC, and advanced EOS and LSC were found in the south of the region, while there were completely different shifts in the north. SOS for the various land cover features responded to snow cover differently, while EOS among different vegetation types responded to snowfall almost the same. The timing of snow cover is likely a key driving factor behind the dynamics of vegetation phenology over the Arctic tundra. The present study suggests that snow cover urgently needs more attention to advance understanding of vegetation phenology in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora, V. K., and G. J. Boer, 2001: Effects of simulated climate change on the hydrology of major river basins. J. Geophys. Res., 106, 3335–3348.

    Article  Google Scholar 

  • Ávila-Jiménez, M., and S. Coulson, 2011: Can snow depth be used to predict the distribution of the high Arctic aphid Acyrthosiphon svalbardicum (Hemiptera: Aphididae) on Spitsbergen? BMC Ecology, 11, 1–13.

    Article  Google Scholar 

  • Baringer, M. O., D. S. Arndt, and M. R. Johnson, 2010: State of the climate in 2009. Bull. Amer. Meteor. Soc., 91, 1–222.

    Article  Google Scholar 

  • Betts, A. K., and J. H. Ball, 1997: Albedo over the boreal forest. J. Geophys. Res., 102, 28901–28909.

    Article  Google Scholar 

  • Brown, R. D., 2000: Northern hemisphere snow cover variability and change, 1915–97. J. Climate, 13, 2339–2355.

    Article  Google Scholar 

  • Brown, R. D., and D. A. Robinson, 2011: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere, 5, 219–229.

    Article  Google Scholar 

  • Brown, R. D., B. Brasnett, and D. Robinson, 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.-Ocean, 41, 1–14.

    Article  Google Scholar 

  • Brown, R., C. Derksen, and L. Wang, 2010: A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J. Geophys. Res., 115, doi: 10.1029/2010JD013975.

  • Buermann, W., B. R. Lintner, C. D. Koven, A. Angert, J. E. Pinzon, C. J. Tucker, and I. Y. Fung, 2007: The changing carbon cycle at Mauna Loa observatory. Proc. the National Academy of Sciences of the United States of America, 104, 4249–4254.

    Article  Google Scholar 

  • Cane, M. A., 2010: Climate science decadal predictions in demand. Nature Geoscience, 3, 231–232.

    Article  Google Scholar 

  • CAVM Team, 2003: Circumpolar Arctic vegetation map (Scale 1:7500000). Conservation of Arctic Flora and Fauna (CAFF) Map No. 1, U.S. Fish and Wildlife Service, Anchorage, AK, US.

    Google Scholar 

  • Chapin, F. S., and Coauthors, 2005: Role of land-surface changes in Arctic summer warming. Science, 310, 657–660.

    Article  Google Scholar 

  • Chmielewski, F. M., and T. Rotzer, 2001: Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 108, 101–112.

    Article  Google Scholar 

  • Cleland, E. E., I. Chuine, A. Menzel, H. A. Mooney, and M. D. Schwartz, 2007: Shifting plant phenology in response to global change. Trends in Ecology and Evolution, 22, 357–365.

    Article  Google Scholar 

  • de Beurs, K. M., and G. M. Henebry, 2008: Northern annular mode effects on the land surface phenologies of northern Eurasia. J. Climate, 21, 4257–4279.

    Article  Google Scholar 

  • de Beurs, K. M., and G. M. Henebry, 2010: A land surface phenology assessment of the northern polar regions using MODIS reflectance time series. Canadian Journal of Remote Sensing, 36, S87–S110.

    Article  Google Scholar 

  • Dye, D. G., 2002: Variability and trends in the annual snow-cover cycle in Northern Hemisphere land areas, 1972–2000. Hydrological Processes, 16, 3065–3077.

    Article  Google Scholar 

  • Easterling, D. R., T. R. Karl, K. P. Gallo, D. A. Robinson, K. E. Trenberth, and A. Dai, 2000: Observed climate variability and change of relevance to the biosphere. J. Geophys. Res., 105, 20101–20114.

    Article  Google Scholar 

  • Eugster, W., and Coauthors, 2000: Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Global change biology 6, 84–115.

    Article  Google Scholar 

  • Flanner, M. G., K. M. Shell, M. Barlage, D. K. Perovich, and M. A. Tschudi, 2011: Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nature Geoscience, 4, 151–155.

    Article  Google Scholar 

  • Forbes, B. C., F. Stammler, T. Kumpula, N. Meschtyb, A. Pajunen, and E. Kaarlejarvi, 2009: High resilience in the Yamal-Nenets social-ecological system, West Siberian Arctic, Russia. Proc. the National Academy of Sciences of the United States of America, 106, 22041–22048.

    Article  Google Scholar 

  • Forbes, B. C., M. Macias Fauria, and P. Zetterberg, 2010: Russian Arctic warming and “greening” are closely tracked by tundra shrub willows. Global Change Biology, 16, 1542–1554.

    Article  Google Scholar 

  • Gafurov, A., and A. Bardossy, 2009: Cloud removal methodology from MODIS snow cover product. Hydrology and Earth System Sciences, 13, 1361–1373.

    Article  Google Scholar 

  • Gerland, S., G. E. Liston, J. G. Winther, J. B. Orbaek, and B. V. Ivanov, 2000: Attenuation of solar radiation in Arctic snow: Field observations and modelling. Annals of Glaciology, 31(1), 364–368.

    Article  Google Scholar 

  • Goetz, S. J., and Coauthors, 2011: Recent Changes in Arctic Vegetation: Satellite Observations and Simulation Model Predictions. Eurasian Arctic Land Cover and Land Use in a Changing Climate, G. Gutman and A. Reissell, Eds., Springer Netherlands, 9–36.

    Google Scholar 

  • Gordo, O., and J. Jose Sanz, 2009: Long-term temporal changes of plant phenology in the Western Mediterranean. Global Change Biology, 15, 1930–1948.

    Article  Google Scholar 

  • Groisman, P. Y., T. R. Karl, and R. W. Knight, 1994a: Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science, 263, 198–200.

    Article  Google Scholar 

  • Groisman, P. Y., T. R. Karl, R. W. Knight, and G. L. Stenchikov, 1994b: Changes of snow cover, temperature, and radiative heat-balance over the Northern-Hemisphere. J. Climate, 7, 1633–1656.

    Article  Google Scholar 

  • Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett., 33, doi:10.1029/2005GL025127.

    Google Scholar 

  • Hall, D. K., and G. A. Riggs, 2007: Accuracy assessment of theMODIS snow products. Hydrological Processes, 21, 1534–1547.

    Article  Google Scholar 

  • Hall, D. K., G. A. Riggs, V. V. Salomonson, N. E. Di-Girolamo, and K. J. Bayr, 2002: MODIS snow-cover products. Remote Sens. Environ., 83, 181–194.

    Article  Google Scholar 

  • Ho, C. H., E. J. Lee, I. Lee, and S. J. Jeong, 2006: Earlier spring in Seoul, Korea. Int. J. Climatol., 26, 2117–2127.

    Article  Google Scholar 

  • Huang, X., T. Liang, X. Zhang, and Z. Guo, 2011: Validation of MODIS snow cover products using Landsat and ground measurements during the 2001–2005 snow seasons over northern Xinjiang, China. Int. J. Remote Sens., 32, 133–152.

    Article  Google Scholar 

  • IPCC, 2007: Climate Change 2007. The Physical Science Basis. Cambridge University Press, Cambridge, 996pp.

    Google Scholar 

  • Jeong, S. J., C. H. Ho, H. J. Gim, and M. E. Brown, 2011: Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Global Change Biology, 17, 2385–2399.

    Article  Google Scholar 

  • Jeong, S.-J., D. Medvigy, E. Shevliakova, and S. Malyshev, 2012: Uncertainties in terrestrial carbon budgets related to spring phenology. J. Geophys. Res., 117, doi: 10.1029/2011JG001868.

  • Jeong, S. J., C. H. Ho, B. M. Kim, S. Feng, and D. Medvigy, 2013: Non-linear response of vegetation to coherent warming over northern high latitudes. Remote Sensing Letters, 4, 123–130.

    Article  Google Scholar 

  • Jia, G. J., H. E. Epstein, and D. A. Walker, 2006: Spatial heterogeneity of tundra vegetation response to recent temperature changes. Global Change Biology, 12, 42–55.

    Article  Google Scholar 

  • Jia, G. J., H. E. Epstein, and D. A. Walker, 2009: Vegetation greening in the canadian arctic related to decadal warming. Journal of Environmental Monitoring, 11, 2231–2238.

    Article  Google Scholar 

  • Jonas, T., C. Rixen, M. Sturm, and V. Stoeckli, 2008: How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res., 113, doi: 10.1029/2007JG000680.

  • Jonsson, A. M., L. Eklundh, M. Hellstrom, L. Barring, and P. Jonsson, 2010: Annual changes in MODIS vegetation indices of Swedish coniferous forests in relation to snow dynamics and tree phenology. Remote Sens. Environ., 114, 2719–2730.

    Article  Google Scholar 

  • Karl, T. R., P. Y. Groisman, R. W. Knight, and R. R. Heim, 1993: Recent variations of snow cover and snowfall in North America and their relation to precipitation and temperature variations. J. Climate, 6, 1327–1344.

    Article  Google Scholar 

  • Kreyling, J., 2010: Winter climate change: A critical factor for temperate vegetation performance. Ecology, 91, 1939–1948.

    Article  Google Scholar 

  • Litaor, M. I., M. Williams, and T. R. Seastedt, 2008: Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. J. Geophys. Res., 113, doi: 10.1029/2007JG000419

  • Manabe, S., and R. T. Wetherald, 1987: Large-scale changes of soil wetness induced by an increase in atmospheric carbon-dioxide. J. Atmos. Sci., 44, 1211–1235.

    Article  Google Scholar 

  • Menzel, A., 2003: Plant phenological anomalies in Germany and their relation to air temperature and NAO. Climatic Change, 57, 243–263.

    Article  Google Scholar 

  • Menzel, A., and P. Fabian, 1999: Growing season extended in Europe. Nature, 397, 659–659.

    Article  Google Scholar 

  • Menzel, A., and Coauthors, 2006: European phenological response to climate change matches the warming pattern. Global change biology, 12, 1969–1976.

    Article  Google Scholar 

  • Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani, 1997: Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698–702.

    Article  Google Scholar 

  • Nagler, T., H. Rott, P. Malcher, and F. Mueller, 2008: Assimilation of meteorological and remote sensing data for snowmelt runoff forecasting. Remote Sens. Environ., 112, 1408–1420.

    Article  Google Scholar 

  • Oberbauer, S. F., G. Starr, and E. W. Pop, 1998: Effects of extended growing season and soil warming on carbon dioxide and methane exchange of tussock tundra in Alaska. J. Geophys. Res., 103, 29075–29082.

    Article  Google Scholar 

  • Peterson, D. W., and D. L. Peterson, 2001: Mountain hemlock growth responds to climatic variability at annual and decadal time scales. Ecology, 82, 3330–3345.

    Article  Google Scholar 

  • Piao, S. L., J. Y. Fang, L. M. Zhou, P. Ciais, and B. Zhu, 2006: Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Change Biol., 12, 672–685.

    Article  Google Scholar 

  • Piao, S., M. Cui, A. Chen, X. Wang, P. Ciais, J. Liu, and Y. Tang, 2011: Altitude and temperature dependence of change in the spring vegetation greenup date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology, 151, 1599–1608.

    Article  Google Scholar 

  • Pielke, R. A., G. E. Liston, and A. Robock, 2000: Insolation-weighted assessment of Northern Hemisphere snow-cover and sea-ice variability. Geophys. Res. Lett., 27, 3061–3064.

    Article  Google Scholar 

  • Raisanen, J., 2008: Warmer climate: Less or more snow? Climate Dyn., 30, 307–319.

    Article  Google Scholar 

  • Reed, B., M. Budde, P. Spencer, and A. E. Miller, 2009: Integration ofMODIS-derived metrics to assess interannual variability in snowpack, lake ice, and NDVI in southwest Alaska. Remote Sens. Environ., 113, 1443–1452.

    Article  Google Scholar 

  • Running, S. W., J. B. Way, K. C. McDonald, J. S. Kimball, S. Frolking, A. R. Keyser, and R. Zimmerman, 1999: Radar remote sensing proposed for monitoring freeze-thaw transitions in boreal regions. Eos Trans. Amer. Geophys. Union, 80, 213–221.

    Article  Google Scholar 

  • Saunders, M. A., B. D. Qian, and B. Lloyd-Hughes, 2003: Summer snow extent heralding of the winter North Atlantic oscillation. Geophys. Res. Lett., 30, doi: 10.1029/2002GL016832

  • Serreze, M. C., D. H. Bromwich, M. P. Clark, A. J. Etringer, T. J. Zhang, and R. Lammers, 2002: Large-scale hydro-climatology of the terrestrial Arctic drainage system. J. Geophys. Res., 108, doi: 10.1029/2001JD000919.

  • Smith, N. V., S. S. Saatchi, and J. T. Randerson, 2004: Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002. J. Geophys. Res., 109, doi: 10.1029/2003JD004472.

  • Stewart, K.M., R.T. Bowyer, B.L. Dick, B. K. Johnson, and J. G. Kie, 2005: Density-dependent effects on physical condition and reproduction in North American elk: An experimental test. Oecologia, 143, 85–93.

    Article  Google Scholar 

  • Sturm, M., C. Racine, and K. Tape, 2001: Climate change-Increasing shrub abundance in the Arctic. Nature, 411, 546–547.

    Article  Google Scholar 

  • Sturm, M., T. Douglas, C. Racine, and G. E. Liston, 2005: Changing snow and shrub conditions affect albedo with global implications. J. Geophys. Res, 110, doi: 10.1029/2005JG000013.

  • Tucker, C. J., 1979: Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ., 8, 127–150.

    Article  Google Scholar 

  • Walker, D. A., and Coauthors, 2005: The circumpolar Arctic vegetation map. Journal of Vegetation Science, 16, 267–282.

    Article  Google Scholar 

  • Walker, D. A., and Coauthors, 2009: Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: Interactions of ecological and social factors affecting the Arctic normalized difference vegetation index. Environmental Research Letters, 4, doi: 10.1088/1748-9326/4/4/045004.

  • Wang, X., H. Xie, and T. Liang, 2008: Evaluation of MODIS snow cover and cloud mask and its application in northern Xinjiang, China. Remote Sens. Environ., 112, 1497–1513.

    Article  Google Scholar 

  • White, M. A., and Coauthors, 2009: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Global Change Biology, 15, 2335–2359.

    Article  Google Scholar 

  • Wipf, S., and C. Rixen, 2010: A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Research, 29, 95–109.

    Article  Google Scholar 

  • Yang, D. Q., D. Robinson, Y. Y. Zhao, T. Estilow, and B. S. Ye, 2003: Streamflow response to seasonal snow cover extent changes in large Siberian watersheds. J. Geophys. Res., 108, 1–14.

    Google Scholar 

  • Ye, H. C., 2001: Increases in snow season length due to earlier first snow and later last snow dates over North Central and Northwest Asia during 1937–94. Geophys. Res. Lett., 28, 551–554.

    Article  Google Scholar 

  • Zeng, H., G. Jia, and H. Epstein, 2011: Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environmental Research Letters, 6, doi: 10.1088/1748-9326/6/4/045508.

  • Zhang, T. J., 2005: Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys., 43, doi: 10.1029/2004RG000157.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gensuo Jia  (贾根锁).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, H., Jia, G. Impacts of snow cover on vegetation phenology in the arctic from satellite data. Adv. Atmos. Sci. 30, 1421–1432 (2013). https://doi.org/10.1007/s00376-012-2173-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-2173-x

Key words

Navigation