Skip to main content
Log in

The tropical intraseasonal oscillation in SAMIL coupled and uncoupled general circulation models

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Simulations of tropical intraseasonal oscillation (TISO) in SAMIL, the Spectral Atmospheric Model from the Institute of Atmospheric Physics (IAP) State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) coupled and uncoupled general circulation models were comprehensively evaluated in this study. Compared to the uncoupled model, the atmosphere-ocean coupled model improved the TISO simulation in the following aspects: (1) the spectral intensity for the 30–80-day peak eastward periods was more realistic; (2) the eastward propagation signals over western Pacific were stronger; and (3) the variance distribution and stronger signals of Kelvin waves and mixed Rossby gravity waves were more realistic. Better performance in the coupled run was assumed to be associated with a better mean state and a more realistic relationship between precipitation and SST. In both the coupled and uncoupled runs, the unrealistic simulation of the eastward propagation over the equatorial Indian Ocean might have been associated with the biases of the precipitation mean state over the Indian Ocean, and the unrealistic split of maximum TISO precipitation variance over the Pacific might have corresponded to the exaggeration of the double Intertropical Convergence Zone (ITCZ) structure in precipitation mean state. However, whether a better mean state leads to better TISO activity remains questionable. Notably, the northward propagation over the Indian Ocean during summer was not improved in the mean lead-lag correlation analysis, but case studies have shown some strong cases to yield remarkably realistic northward propagation in coupled runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajayamohan, R. S., and B. N. Goswami, 2007: Dependence of simulation of summer tropical intraseasonal oscillations on the simulation of seasonal mean. J. Atmos. Sci., 64, 460–478.

    Article  Google Scholar 

  • Bao, Q., G. Wu, Y. Liu, J. Yang, Z. Wang, and T. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27, 1131–1142.

    Article  Google Scholar 

  • Bergman, J. W., H. H. Hendon, and K. M. Weickmann, 2001: Intraseasonal air-sea interactions at the onset of El Niño. J. Climate, 14, 1702–1719.

    Article  Google Scholar 

  • Brinkop, S., and E. Roeckner, 1995: Sensitivity of a general-circulation model to parameterizations of cloud-turbulence interactions in the atmospheric boundary-layer. Tellus(A), 47, 197–220.

    Article  Google Scholar 

  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022.

    Article  Google Scholar 

  • Edwards, J. M., and A. Slingo, 1996: A studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–720.

    Article  Google Scholar 

  • Fu, X., and B. Wang, 2004: Different solutions of intraseasonal oscillation exist in atmosphere ocean coupled model and atmosphere-only model. J. Climate, 17, 1263–1271.

    Article  Google Scholar 

  • Fu, X., and B. Wang, 2009: Critical roles of the stratiform rainfall in sustaining the Madden-Julian oscillation: GCM experiments. J. Climate, 22, 3939–3959.

    Article  Google Scholar 

  • Hayashi, Y., 1979: A generalized method of resolving transient disturbances into standing and traveling waves by space-time spectral analysis. J. Atmos. Sci., 36, 1017–1029.

    Article  Google Scholar 

  • Hayashi, Y., and D. G. Golder, 1986: Tropical intraseasonal oscillations appearing in a GFDL general circulation model and FGGE data. Part I: Phase propagation. J. Atmos. Sci., 43, 3058–3067.

    Article  Google Scholar 

  • Hendon, H. H., 2000: Impact of air-sea coupling on the Madden-Julian Oscillation in a general circulation model. J. Atmos. Sci., 57, 3939–3952.

    Article  Google Scholar 

  • Hendon, H. H., and B. Liebmann, 1990: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47, 2909–2924.

    Article  Google Scholar 

  • Higgins, R. W., and W. Shi, 2001: Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system. J. Climate, 14, 403–417.

    Article  Google Scholar 

  • Huffman, G. J., and Coauthors, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 36–50.

    Article  Google Scholar 

  • Inness, P. M., J. M. Slingo, E. Guilyardi, and J. Cole, 2003: Simulation of the Madden-Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16, 365–382.

    Article  Google Scholar 

  • Jiang, X., and Coauthors, 2009: Vertical heating structures associated with the MJO as characterized by TRMM estimates, ECMWF reanalyses, and forecasts: A case study during 1998/99 winter. J. Climate, 22, 6001–6020.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kessler, W. S., and R. Kleeman, 2000: Rectification of the Madden-Julian oscillation into the ENSO cycle. J. Climate, 13, 3560–3575.

    Article  Google Scholar 

  • Kiladis, G. N., and K. M. Weickmann, 1992: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120, 1900–1923.

    Article  Google Scholar 

  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 6413–6436.

    Article  Google Scholar 

  • Krishnamurti, T. N., and D. Subrahmanyam, 1982: The 30–50-day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 2088–2095.

    Article  Google Scholar 

  • Lau, K. M., and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 1354–1367.

    Article  Google Scholar 

  • Lau, K. M., L. M. Held and J. D. Neelin, 1988: The Madden-Julian oscillation in an idealized general circulation model. J. Atmos. Sci., 45, 3810–3832.

    Article  Google Scholar 

  • Li, C., X. L. Jia, J. Ling, W. Zhou, and C. D. Zhang, 2009: Sensitivity of MJO simulations to diabatic heating profiles. Climate Dyn., 32, 167–187.

    Article  Google Scholar 

  • Liebmann, B., and D. L. Hartmann, 1984: An observational study of tropical-midlatitude interaction on intraseasonal time scales during winter. J. Atmos. Sci., 41, 3333–3350.

    Article  Google Scholar 

  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian oscillation. J. Meteor. Soc. Japan, 72, 401–411.

    Google Scholar 

  • Liu, H., and G. X. Wu, 1997: Impacts of land surface on climate of July and onset of summer monsoon: A study with an AGCM plus SSiB. Adv. Atmos. Sci., 14, 289–308.

    Article  Google Scholar 

  • Liu, H. L., X. Zhang, W. Li, Y. X. Yu, and R. C. Yu, 2004: An eddy-permitting oceanic general circulation model and its preliminary evaluations. Adv. Atmos. Sci., 21, 675–690.

    Article  Google Scholar 

  • Liu, P., and Coauthors, 2009: Tropical intraseasonal variability in the MRI-20km60L AGCM. J. Climate, 22, 2006–2022.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the Tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123.

    Article  Google Scholar 

  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden-Julian oscillation. J. Climate, 13, 1451–1460.

    Article  Google Scholar 

  • Matthews, A. J., 2004: Atmospheric response to observed intraseasonal tropical sea surface temperature anomalies. Geophys. Res. Lett., 31, L14107, doi: 10.1029/2004GL020474.

    Article  Google Scholar 

  • Murakami, T., T. Nakazawa, and J. He, 1984: On the 40–50 day oscillations during the 1979 northern hemisphere summer. I: Phase propagation. J. Meteor. Soc. Japan, 62, 440–468.

    Google Scholar 

  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Technical Memo. 206, Reading, England, 41pp.

  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 1001–1039.

    Article  Google Scholar 

  • Pan, L. L., and T. Li, 2008: Interactions between the tropical ISO and midlatitude low-frequency flow. Climate Dyn., 31, 375–388.

    Article  Google Scholar 

  • Rajendran, K., A. Kitoh, R. Mizuta, S. Sajani, and T. Nakazawa, 2008: High-resolution simulation of mean convection and its intraseasonal variability over the Tropics in the MRI/JMA 20-km mesh AGCM. J. Climate, 21, 3722–3739.

    Article  Google Scholar 

  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12, 325–357.

    Article  Google Scholar 

  • Song, X. L., 2005: The evaluation analysis of two kinds of mass flux cumulus parameterizations in climate simulation. Ph. D. dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 119–145. (in Chinese)

  • Sperber, K. R., J. M. Slingo, P. M. Inness, and K. M. Lau, 1997: On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and the GLA and UKMO AMIP simulations. Climate Dyn., 13, 769–779.

    Article  Google Scholar 

  • Sperber, K. R., S. Gualdi, S. Legutke, and V. Gayler, 2005: The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models. Climate Dyn., 25, 117–140.

    Article  Google Scholar 

  • Sun, Z., and L. Rikus, 1999a: Improved application of ESFT to inhomogeneous atmosphere. J. Geophys. Res., 104, 6291–6303.

    Article  Google Scholar 

  • Sun, Z., and L. Rikus, 1999b: Parameterization of effective radius of cirrus clouds and its verification against observations. Quart. J. Roy. Meteor. Soc., 125, 3037–3056.

    Article  Google Scholar 

  • Takayabu, Y. N., T. Iguchi, M. Kachi, A. Shibata, and H. Kanzawa, 1999: Abrupt termination of the 1997–98 El Niño in response to a Madden-Julian oscillation. Nature, 402, 279–282.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. [Available online from http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf]

  • Tian, B. J., Y. L. Yung, D. E. Waliser, T. Tyranowski, L. Kuai, E. J. Fetzer, and F. W. Irion, 2007: Intraseasonal variations of the tropical total ozone and their connection to the Madden-Julian Oscillation. Geophys. Res. Lett., 34, L08704, doi: 10.1029/2007GL029451.

    Article  Google Scholar 

  • Tian, B. J., and Coauthors, 2008: Does the Madden-Julian oscillation influence aerosol variability? J. Geophys. Res., 113, D12215, doi: 10.1029/2007JD009372.

    Article  Google Scholar 

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800.

    Article  Google Scholar 

  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30–60 day oscillation and the Arakawa-Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883–901.

    Google Scholar 

  • Waliser, D. E., and Coauthors, 2003: AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dyn., 21, 423–446.

    Article  Google Scholar 

  • Waliser, D. E., K. M. Lau, J. H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden-Julian oscillation: a model perturbation experiment. J. Atmos. Sci., 56, 333–358.

    Article  Google Scholar 

  • Waliser, D. E., R. Murtugudde, P. Strutton, and J.-L. Li, 2005: Subseasonal organization of ocean chlorophyll: Prospects for prediction based on the Madden-Julian oscillation. Geophys. Res. Lett., L23602, doi: 10.1029/2005GL024300.

  • Waliser, D. E., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 3006–3030.

    Article  Google Scholar 

  • Wang, B., 2005: Theories. Intraseasonal Variability of the Atmosphere-Ocean Climate System, Lau and Waliser, Eds., Springer-Verlag, Heidelberg, Germany, 436pp.

    Google Scholar 

  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies-1975–1985. Meteor. Atmos. Phys., 44, 43–61.

    Article  Google Scholar 

  • Wang, B., P. Webster, K. Kikuchi, T. Yasunari, and Y. Qi, 2006: Summer quasi-monthly oscillation in the global tropics. Climate Dyn., 27, 661–675.

    Article  Google Scholar 

  • Wang, B., and X. Xie, 1997: A model for the summer intraseasonal oscillation. J. Atmos. Sci., 54, 72–86.

    Article  Google Scholar 

  • Wang, B., and X. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air-sea interaction in maintaining Madden-Julian oscillations. J. Climate, 8, 2116–2135.

    Article  Google Scholar 

  • Wang, W. Q., and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12, 1423–1457.

    Article  Google Scholar 

  • Weickmann, K. M., 1983: Intraseasonal circulation and outgoing longwave radiation modes during northern hemisphere winter. Mon. Wea. Rev., 111, 1838–1858.

    Article  Google Scholar 

  • Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 Day) fluctuations of Outgoing Longwave Radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113, 941–961.

    Article  Google Scholar 

  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399.

    Article  Google Scholar 

  • Yang, J., B. Wang, and B. Wang, 2008: Anticorrelated intensity change of the quasi-biweekly and 30–50 day oscillations over the South China Sea. Geophys. Res. Lett., doi: 10.1029/2008GL034449.

  • Yang, J., B. Wang, B. Wang, and L. J. Li, 2009: The East Asia-western North Pacific summer intraseasonal oscillation simulated in GAMIL 1.1.1. Adv. Atmos. Sci., 26, 480–492, doi: 10.1007/s00376-009-0480-7.

    Article  Google Scholar 

  • Yasunari, T., 1979: Cloudiness fluctuations associated with the northern hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227–242.

    Google Scholar 

  • Zhang, C., M. Dong, H. H. Hendon, E. D. Maloney, A. Marshall, K. R. Sperber, and W. Wang, 2006: Simulations of the Madden-Julian oscillation in four pairs of coupled and uncoupled global models. Climate Dyn., doi: 10.1007/s00382-006-0148-2.

  • Zhang, G. J., and X. Song, 2009: Interaction of deep and shallow convection is key to Madden-Julian oscillation simulation. Geophys. Res. Lett., 36, L09708, doi: 10.1029/2009GL037340.

    Article  Google Scholar 

  • Zhou, W., and J. C. Chan, 2005: Intraseasonal oscillations and the South China Sea summer monsoon onset. Int. J. C1imatol, 25, 1585–1609.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Bao  (包 庆).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Bao, Q., Wang, X. et al. The tropical intraseasonal oscillation in SAMIL coupled and uncoupled general circulation models. Adv. Atmos. Sci. 29, 529–543 (2012). https://doi.org/10.1007/s00376-011-1087-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-011-1087-3

Key words

Navigation