Skip to main content
Log in

The impact of Indian Ocean variability on high temperature extremes across the southern Yangtze River valley in late summer

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, the teleconnection between Indian Ocean sea surface temperature anomalies (SSTAs) and the frequency of high temperature extremes (HTEs) across the southern Yangtze River valley (YRV) was investigated. The results indicate that the frequency of HTEs across the southern YRV in August is remotely influenced by the Indian Ocean basin mode (IOBM) SSTAs. Corresponding to June–July–August (JJA) IOBM warming condition, the number of HTEs was above normal, and corresponding to IOBM cooling conditions, the number of HTEs was below normal across the southern YRV in August. The results of this study indicate that the tropical IOBM warming triggered low-level anomalous anticyclonic circulation in the subtropical northwestern Pacific Ocean and southern China by emanating a warm Kelvin wave in August. In the southern YRV, the reduced rainfall and downward vertical motion associated with the anomalous low-level anticyclonic circulation led to the increase of HTE frequency in August.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Black, E., M. Blackburn, G. Harrison, B. Hoskins, and J. Methven, 2004: Factors contributing to the summer 2003 European heatwave. Weather, 59, 217–223.

    Article  Google Scholar 

  • Chowdary, J. S., S. P. Xie, J. J. Luo, J. Hafner, S. Behera, Y. Masumoto, and T. Yamagata, 2009: Predictability of Northwest Pacific climate during summer and the role of the tropical Indian Ocean. Climate Dyn., 1, 169.

    Google Scholar 

  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007: Soil Moisture-Atmosphere Interactions during the 2003 European Summer Heat Wave. J. Climate, 20, 5081–5099.

    Article  Google Scholar 

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical cirulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.

    Article  Google Scholar 

  • Haines, A., R. S. Kovats, D. Campbell-Lendrum, and C. Corvalan, 2006: Climate change and human health: Impacts, vulnerability, and mitigation. The Lancet, 367, 2101–2109.

    Article  Google Scholar 

  • Hu, K. M., G. Huang, and R. H. Huang, 2011: The impact of tropical Indian Ocean variability on summer surface air temperature in China. J Climate, doi: 10.1175/2011JCLI4152.1. (in press)

  • Huang, G., 2004: An index measuring the interannual variation of the East Asian summer monsoon-The EAP index. Adv. Atmos. Sci., 21, 41–52.

    Article  Google Scholar 

  • Huang, G., and K. Hu, 2008: Impact of North Indian Ocean SSTA on Northwest Pacific lower layer anomalous anticyclone in summer. Journal of Nanjing Institute of Meteorology, 31, 749–757. (in Chinese)

    Google Scholar 

  • Huang, G., X. Qu, and K. Hu, 2010: The impact of the tropical Indian Ocean on South Asian High in boreal summer. Adv. Atmos. Sci., 28, 421–432.

    Article  Google Scholar 

  • Huang, R., and Y. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 21–32.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932.

    Article  Google Scholar 

  • Li, S. L., J. Lu, G. Huang, and K. M. Hu, 2008: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 6080–6088.

    Article  Google Scholar 

  • Li, Z., and Z. W. Yan, 2009: Homogenized daily mean/maximum/minimum temperature series for China from 1960–2008. Atmos. Oceanic Sci. Lett, 2, 237–243.

    Google Scholar 

  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation data set. Bull. Amer. Meteor. Soc., 77, 1275–1277.

    Google Scholar 

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25–43.

    Google Scholar 

  • McMichael, A. J., R. E. Woodruff, and S. Hales, 2006: Climate change and human health: Present and future risks. The Lancet, 367, 859–869.

    Article  Google Scholar 

  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373–390.

    Google Scholar 

  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/ 2002JD002670.

    Article  Google Scholar 

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.

    Google Scholar 

  • Su, B. D., T. Jiang, and W. B. Jin, 2006: Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, China. Theor. Appl. Climatol., 83(1–4), 139–151.

    Article  Google Scholar 

  • Tan, J., Y. Zheng, G. Song, L. Kalkstein, A. Kalkstein, and X. Tang, 2007: Heat wave impacts on mortality in Shanghai, 1998 and 2003. International Journal of Biometeorology, 51, 193–200.

    Article  Google Scholar 

  • Wei, K., and W. Chen, 2009: Climatology and trends of high temperature extremes across China in summer. Atmos. Oceanic Sci. Lett., 2, 153–158.

    Google Scholar 

  • Wu, R., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. Gao, 2010: Changes in the relationship between Northeast China summer temperature and ENSO. J. Geophys. Res., 115, doi: 10.1029/2010D014422.

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on Gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.

    Article  Google Scholar 

  • Xie, S. P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean Capacitor Effect on Indo-Western Pacific Climate during the Summer following El Nino. J. Climate, 22, 730–747.

    Article  Google Scholar 

  • Yang, J. L., Q. Y. Liu, S. P. Xie, Z. Y. Liu, and L. X. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi: 10.1029/2006GL028571.

    Article  Google Scholar 

  • Zhai, P., A. Sun, F. Ren, X. Liu, B. Gao, and Q. Zhang, 1999: Changes of climate extremes in China. Climatic Change, 42, 203–218.

    Article  Google Scholar 

  • Zhou, W., and J. C. L. Chan, 2005: Intraseasonal oscillations and the South China Sea summer monsoon onset. Int. J. Climatol., 25, 1585–1609.

    Article  Google Scholar 

  • Zhou, W., and J. C. L. Chan, 2007: ENSO and the South China Sea summer monsoon onset. Int. J. Climatol., 27, 157–167.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Huang  (黄 刚).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, K., Huang, G., Qu, X. et al. The impact of Indian Ocean variability on high temperature extremes across the southern Yangtze River valley in late summer. Adv. Atmos. Sci. 29, 91–100 (2012). https://doi.org/10.1007/s00376-011-0209-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-011-0209-2

Key words

Navigation