Skip to main content
Log in

Impact of the South China Sea throughflow on the pacific low-latitude western boundary current: A numerical study for seasonal and interannual time scales

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Prior studies have revealed that, as a part of the Pacific tropical gyre, the South China Sea throughflow (SCSTF) is strongly influenced by the Pacific low-latitude western boundary current (LLWBC). In this study, ocean general circulation model (OGCM) experiments with and without connection to the South China Sea (SCS) were performed to investigate the impact of the SCSTF on the Pacific LLWBC. These model experiments show that if the SCS is blocked, seasonal variability of the Kuroshio and Mindanao Current becomes stronger, and the meridional migration of the North Equatorial Current (NEC) bifurcation latitude is enhanced. Both in seasonal and interannual time scales, stronger Luzon Strait transport (LST) induces a stronger Kuroshio transport combined with a southward shift of the NEC bifurcation, which is unfavorable for a further increase of the LST; a weaker LST induces a weaker Kuroshio transport and a northward shifting NEC bifurcation, which is also unfavorable for the continuous decrease of the LST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cai, S. Q., H. L. Liu, W. Li, and X. M. Long, 2005: Application of LICOM to the numerical study of the water exchange between the South China Sea and its adjacent oceans. Acta Oceanologica Sinica, 24(4), 10–19.

    Google Scholar 

  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017.

    Article  Google Scholar 

  • Fang, G. H., Z. X. Wei, B. H. Cui, K. Wang, Y. Fang, and W. Li, 2003: Interbasin freshwater, heat and salt transport through the boundaries of the East and South China Seas from a variable-grid global ocean circulation model. Science in China (D), 46(1), 149–161.

    Article  Google Scholar 

  • Fang, G., and Coauthors, 2010: Volume, heat, and freshwater transports from the South China Sea to Indonesian seas in the boreal winter of 2007–2008. J. Geophys. Res., 115, C12020, doi: 10.1029/2010JC006225.

    Article  Google Scholar 

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.

    Article  Google Scholar 

  • Godfrey, J. S., 1996: The effect of the Indonesian through-flow on ocean circulation and heat exchange with the atmosphere: A review. J. Geophys. Res., 101, 12217–12237.

    Article  Google Scholar 

  • Godfrey, J. S., 1989: A Sverdrup model of the depthintegrated flow for the world ocean allowing for island circulations. Geophysical & Astrophysical Fluid Dynamics, 45, 89–112.

    Article  Google Scholar 

  • Gordon, A. L., R. D. Susanto, and K. Vranes, 2003: Cool Indonesian Throughflow as a consequence of restricted surface layer flow. Nature, 425, 824–828.

    Article  Google Scholar 

  • Jin, X. Z., X. H. Zhang, and T. J. Zhou, 1999: Fundamental framework and experiments of the third generation of IAP/LASG world ocean general circulation mode1. Adv. Atmos. Sci., 16, l97–215.

    Article  Google Scholar 

  • Kashino, Y., A. Ishida, and Y. Kuroda, 2005: Variability of the Mindanao Current: Mooring observation results. Geophys. Res. Lett., 32, L18611, doi: 10.1029/2005GL023880.

    Article  Google Scholar 

  • Kim, Y. Y., T. D. Qu, T. Jensen, T. Miyama, H. W. Kang, H. Mitsudera, and A. Ishida, 2004: Seasonal and interannual variations of the NEC bifurcation in a high-resolution OGCM. J. Geophys. Res., 109, 3040, doi: 10.1029/2003JC002013.

    Article  Google Scholar 

  • Lebedev, K. V., and M. I. Yaremchuk, 2000: A diagnostic study of the Indonesian Throughflow. J. Geophys. Res., 105(C5), 11243–11258.

    Article  Google Scholar 

  • Levitus, S., and T. P. Boyer, 1994: Temperature, Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, Washington, D.C., U.S. Department of Commerce, 117pp.

    Google Scholar 

  • Levitus, S., R. Burgett, and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, Washington, D.C., U.S. Department of Commerce, 99pp.

    Google Scholar 

  • Li, W., H. L. Liu, and X. H. Zhang, 2004: Indonesian Throughflow in an eddy-permitting oceanic GCM. Chinese Science Bulletin, 49(21), 2305–2310.

    Article  Google Scholar 

  • Liu, H. L., 2002: High resolution oceanic general circulation model and the simulation of the upper ocean circulation in the tropical Pacific. Ph.D. dissertation, Graduate School of the Chinese Academy of Sciences, 178pp. (in Chinese)

  • Liu, H. L., Y. Q. Yu, W. Li, and X. H. Zhang, 2003: LASG/IAP Climate System Ocean Model (LICOM 1.0) Users Manual. Science Press, Beijing, 107pp. (in Chinese)

    Google Scholar 

  • Liu, H. L., X. H. Zhang, W. Li, Y. Q. Yu, and R. C. Yu, 2004: An eddy-permitting oceanic general circulation model and its preliminary evaluation. Adv. Atmos. Sci., 21(5), 675–690.

    Article  Google Scholar 

  • Liu, H. L., W. Li, and X. H. Zhang, 2005: Climatology and Variability of the Indonesian Throughflow in an Eddy-permitting Oceanic GCM. Adv. Atmos. Sci. 22(4), 469–508.

    Google Scholar 

  • Liu, Q. Y., R. X. Huang, D. X. Wang, Q. Xie, and Q. Z. Huang, 2006: Interplay between the Indonesian Throughflow and the South China Sea throughflow. Chinese Science Bulletin, 51(Supp. II), 50–58.

    Article  Google Scholar 

  • Liu, Q. Y., D. X. Wang, W. Zhou, Q. Xie, and Y. Zhang, 2010: Covariation of the Indonesian throughflow and South China Sea throughflow associated with the 1976/77 regime shift. Adv. Atmos. Sci., 27(1), 87–94, doi: 10.1007/s00376-009-8061-3.

    Article  Google Scholar 

  • Lukas, R., T. Yamagata, and J. P. McCreary, 1996: Philippine sea western boundary currents and the Indonesian Throughflow. J. Geophys. Res., 101, 12209–12216.

    Article  Google Scholar 

  • Metzger, E. J., and H. E. Hurlburt, 1996: Coupled dynamics of the South China Sea, the Sulu Sea and the Pacific Ocean. J. Geophys. Res., 101(C5), 12331–12352.

    Article  Google Scholar 

  • Metzger, E. J., and H. E. Hurlburt, 2001: The Importance of High Horizontal Resolution and Accurate Coastline Geometry in Modeling South China Sea Inflow. Geophys. Res. Lett., 28(6), 1059–1062.

    Article  Google Scholar 

  • Meyers, G., R. J. Bailey, and A. P. Worby, 1995: Geostrophic transport of Indonesian Throughflow. Deep-Sea Res. I, 42, 1163–1174.

    Article  Google Scholar 

  • Nitani, H., 1972: Beginning of the Kuroshio, in Kuroshio: Its physical aspects of the Japan Current. Kuroshio: Physical Aspects of the Japan Current, Stommel and Yoshida, Eds., University of Washington Press, 129–163.

  • Pacanowski, R. C., and G. Philander, 1981: Parameterization of vertical mixing in numerical models of the tropical ocean. J. Phys. Oceanogr., 11, 1442–1451.

    Article  Google Scholar 

  • Qiu, B., and R. Lukas, 1996: Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. J. Geophys. Res., 101, 12315–12330.

    Article  Google Scholar 

  • Qu, T., 2000: Upper layer circulation in the South China Sea. J. Phys. Oceanogr., 30, 1450–1460.

    Article  Google Scholar 

  • Qu, T., and R. Lukas, 2003: The bifurcation of the North Equatorial Current in the Pacific. J. Phys. Oceanogr., 33, 5–18.

    Article  Google Scholar 

  • Qu, T., H. Mitsudera, and T. Yamagata, 1998: On the western boundary currents in the Philippine Sea. J. Geophys. Res., 103, 7537–7548.

    Article  Google Scholar 

  • Qu, T., Y. Y. Kim, M. Yaremchuk, T. Tozuka, A. Ishida, and T. Yamagata, 2004: Can Luzon strait transport play a role in conveying the impact of ENSO to the South China Sea? J. Climate, 17(18), 3643–3656.

    Article  Google Scholar 

  • Qu, T., Y. Du, G. Meyers, A. Ishida, and D. Wang, 2005: Connecting the tropical Pacific with Indian Ocean through South China Sea. Geophys. Res. Lett., 32, L24609, doi: 10.1029/2005GL024698.

    Article  Google Scholar 

  • Qu, T., Y. Du, and H. Sasaki, 2006: South China Sea throughflow: A heat and freshwater conveyor. Geophys. Res. Lett., 33, L23617, doi: 10.1029/2006GL028350.

    Article  Google Scholar 

  • Qu, T., J. Gan, A. Ishida, Y. Kashino, and T. Tozuka, 2008: Semiannual variation in the western tropical Pacific Ocean. Geophys. Res. Lett., 35, L16602, doi: 10.1029/2008GL035058.

    Article  Google Scholar 

  • Qu, T., Y. T. Song, and T. Yamagata, 2009: An introduction to the South China Sea throughflow: Its dynamics, variability, and application for climate. Dyn. Atmos. Oceans, 47, 3–14.

    Article  Google Scholar 

  • Rayner, N. A., E. B. Horton, D. E. Parker, and C. K. Folland, 1998: Versions 2.3b and 3.0 of the Global Sea Ice and Sea Surface Temperature (GISST) data set. Hadley Centre Internal Note 85, 98pp.

  • Rosati, A., and K. Miyakoda, 1988: A general circulation model for upper ocean circulation. J. Phys. Oceanogr., 18, 1601–1626.

    Article  Google Scholar 

  • Sheremet, V., 2001: Hysteresis of a western boundary current leaping across a gap. J. Phys. Oceanogr., 31, 1247–1259.

    Article  Google Scholar 

  • Toole, J. M., R. C. Millard, Z. Wang, and S. Pu, 1990: Observations of the Pacific North Equatorial Current bifurcation at the Philippine coast. J. Phys. Oceanogr., 20, 307–318.

    Article  Google Scholar 

  • Tozuka, T., T. Kagimoto, Y. Masumoto, and T. Yamagata, 2002: Simulated multiscale variations in the western tropical Pacific: The Mindanao Dome revisited. J. Phys. Oceanogr., 32, 1338–1359.

    Article  Google Scholar 

  • Tozuka, T., T. Qu, and T. Yamagata, 2007: Dramatic impact of the South China Sea on the Indonesian Throughflow. Geophys. Res. Lett., 34, L12612, doi: 10.1029/2007GL030420.

    Article  Google Scholar 

  • Tozuka, T., T. Qu, Y. Masumoto, and T. Yamagata, 2009: Impacts of the South China Sea throughflow on seasonal and interannual variations of the Indonesian Throughflow. Dyn. Atmos. Oceans, 47, 73–85.

    Article  Google Scholar 

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131(612), 2961–3012.

    Article  Google Scholar 

  • Wang, D., Q. Liu, R. Huang, Y. Du, and T. Qu, 2006: Interannual variability of the South China Sea through-flow inferred from wind data and an ocean data assimilation product. Geophys. Res. Lett., 33, L14605, doi: 10.1029/2006GL026316.

    Article  Google Scholar 

  • Wang, W. W., Y. Q. Yu, C. Li, W. Zhou, Q. Y. Liu, and D. X. Wang, 2010: An investigation of the South China Sea throughflow and its impact on upper layer heat content of the South China Sea using LICOM. Acta Oceanologica Sinica, 32(2), 1–11. (in Chinese)

    Article  Google Scholar 

  • Wyrtki, K., 1961: Physical oceanography of the southeast Asian waters. Naga Report 2, Scripps Institution of Oceanography, UC San Diego, 195pp.

    Google Scholar 

  • Yaremchuk, M., and T. Qu, 2004: Seasonal variability of the circulation near the Philippine coast. J. Phys. Oceanogr., 34, 844–855.

    Article  Google Scholar 

  • Yaremchuk, M., J. R. Mccreary, Z. Yu, and R. Furue, 2009: The South China Sea throughflow Retrieved from Climatological Data. J. Phys. Oceanogr., 39, 753–767.

    Article  Google Scholar 

  • Yu, Z., S. Shen, J. P. McCreary, M. Yaremchuk, and R. Furue, 2007: South China Sea throughflow as evidenced by satellite images and numerical experiments. Geophys. Res. Lett., 34, L01601, doi: 10.1029/2006GL028103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxiao Wang  (王东晓).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Wang, D., Zhou, W. et al. Impact of the South China Sea throughflow on the pacific low-latitude western boundary current: A numerical study for seasonal and interannual time scales. Adv. Atmos. Sci. 28, 1367–1376 (2011). https://doi.org/10.1007/s00376-011-0142-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-011-0142-4

Key words

Navigation