Skip to main content
Log in

Cross-tropopause mass exchange associated with a tropopause fold event over the northeastern Tibetan Plateau

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A springtime tropopause fold event, found to be related to a cold trough intrusion from the north, was detected in the northeastern Tibetan Plateau (TP) based on various observations. A nested high-resolution mesoscale model was employed to investigate the effect of orography on the stratosphere-troposphere exchange. The model was found to be able to capture plausible tropopause fold properties. The propagation of the tropopause fold changed significantly when the terrain height in the model was altered. However, decreasing the terrain height had no significant effect on the morphology of folds.

When a fold passed over an elevated surface, a leeside jet stream and a layer of humid air in the middle troposphere tended to develop. This strong leeside descent of air masses and high mid-level potential instability (PI) could give rise to deep upward motions in the leeside and inject tropospheric air into the lower stratosphere. Besides, when the flow encounters an elevated surface, forced lifting together with mid-level PI can trigger deep convective motions on the windward slope. The troposphere to stratosphere transport was found to be persistent and almost stationary over the windward slope of the TP during the evolution of the fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ancellet, G., J. Pelon, M. Beekmann, A. Papayannis, and G. Megie, 1991: Ground based lidar studies of ozone exchanges between the stratosphere and the troposphere. J. Geophys. Res., 96, 22401–22421.

    Article  Google Scholar 

  • Ancellet, G., M. Beekmann, and A. Papayannis, 1994: Impact of a cutoff low development on downward transport of ozone in the troposphere. J. Geophys. Res., 99, 3451–3468.

    Article  Google Scholar 

  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, San Diego, California, 489pp.

    Google Scholar 

  • Appenzeller, C., and H. C. Davies, 1992: Structure of stratospheric intrusions into the troposphere. Nature, 358, 570–572.

    Article  Google Scholar 

  • Austin, J. F., and R. P. Midgley, 1994: The climatology of the jet stream and stratospheric intrusions of ozone over Japan. Atmos. Environ., 28, 39–52.

    Article  Google Scholar 

  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677–692.

    Google Scholar 

  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc.,112, 693–709.

    Google Scholar 

  • Cluley, A. P., and M. J. Oliver, 1978 Aircraft measurements of the humidity in the low stratosphere over southern England 1972–1976. Quart. J. Roy. Meteor. Soc., 104, 511–526.

    Google Scholar 

  • Cox, B. D., M. Bithell, and L. J. Gray, 1995: A general circulation model study of a tropopause-folding event at middle latitudes. Quart. J. Roy. Meteor. Soc., 121, 883–910.

    Article  Google Scholar 

  • Danielsen, E. F, 1968: Stratospheric-tropospheric exchange based upon radio-activity, ozone, and potential vorticity. J. Atmos. Sci., 25, 502–518.

    Article  Google Scholar 

  • Eisele, H., H. E. Scheel, R. Sladkovic, and T. Trickl, 1999: High-resolution lidar measurements of stratospheretroposphere exchange. J. Atmos. Sci., 56, 319–330.

    Article  Google Scholar 

  • Fu, R., and Coauthors, 2006: Short circuit of water vapor and polluted air to the global stratosphere by convection transport over the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 103, 5664–5669.

    Article  Google Scholar 

  • Galani, E., D. Balis, P. Zanis, C. Zerefos, A. Papayannis, H. Wernli, and E. Gerasopoulos, 2003: Observations of stratosphere-to-troposphere transport events over the eastern Mediterranean using a ground-based lidar system. J. Geophys. Res., 108(D12), 8527, doi: 10.1029/2002JD002596.

    Article  Google Scholar 

  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–341.

    Article  Google Scholar 

  • Janjic, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945.

    Article  Google Scholar 

  • Karyampudi, V. M., M. L. Kaplan, S. E. Koch, and R. J. Zamora, 1995: The influence of the RockyMountains on the 13–14 April 1986 severe weather outbreak. Part I: Mesoscale lee cyclogenesis and its relationship to severe weather and dust storms. Mon. Wea. Rev., 123, 1394–1422.

    Article  Google Scholar 

  • Kentarchos, A. S., T. D. Davies, and C. S. Zerefos, 1998: A low latitude stratospheric intrusion associated with a cut-off low. Geophys. Res. Lett., 25, 67–70.

    Article  Google Scholar 

  • Kentarchos, A. S., G. J. Roelofs, and J. Lelieveld, 1999: Model study of a stratospheric intrusion event at lower midlatitudes associated with the development of a cutoff low. J. Geophys. Res., 104(D1), 1717–1727.

    Article  Google Scholar 

  • Lamarque, J. F., 1996: Cross-tropopause mixing of ozone through gravity wave breaking: Observation and modeling. J. Geophys. Res., 101(D17), 22969–22976

    Article  Google Scholar 

  • Lilly, D. K., 1971: Observations of mountain-induced turbulence. J. Geophys. Res., 76, 6585–6587.

    Article  Google Scholar 

  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. Journal of Climate & Applied Meteorology, 22, 1065–1092.

    Article  Google Scholar 

  • Liu, S. C., M. Trainer, F. C. Fehsenfeld, D. D. Parrish, E. J. Williams, D. W. Fahey, G. Hubler, and P. C. Murphy, 1987: Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J. Geophys. Res., 92(D4), 4191–4207.

    Article  Google Scholar 

  • Randel, W., and M. Park, 2006: Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res., 111, D12314, doi: 10.1029/2005JD006490.

    Article  Google Scholar 

  • Reed, R. J, 1955: A study of a characteristic type of upper-level frontogenesis. J. Meteor., 12, 226–237.

    Google Scholar 

  • Schuepbach, E., T. D. Davis, A. C. Massacand, and H. Wernli, 1999: Mesoscale modelling of vertical atmospheric transport in the Alps associated with the advection of a tropopause fold-A winter ozone episode. Atmos. Environ., 33, 3613–3626.

    Article  Google Scholar 

  • Shapiro, M. A, 1978: Further evidence of the mesoscale and turbulence structure of upper level jet streamfrontal zone systems. Mon. Wea. Rev., 106, 1100–1111.

    Article  Google Scholar 

  • Shapiro, M. A, 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and the troposphere. J. Atmos. Sci., 37, 994–1004.

    Article  Google Scholar 

  • Sprenger, M., and H. Wernli, 2003: A northern hemispheric climatology of cross-tropopause exchange for the ERA15 time period (1979–1993). J. Geophys. Res., 108, 8521, doi: 10.1029/2002JK002636.

    Article  Google Scholar 

  • Tian, W. S., M. P. Chipperfield, and Q. Huang, 2008: Effects of the Tibetan plateau on total column ozone distribution. Tellus, 60B, 622–635.

    Google Scholar 

  • Vaughan, G., J. D. Price, and A. Howells, 1994: Transport into the troposphere in a tropopause fold. Quart. J. Roy. Meteor. Soc., 120, 1085–1103.

    Article  Google Scholar 

  • Wang, P. K., 2003: Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res., 108, 4194, doi: 10.1029/2002JD002581.

    Article  Google Scholar 

  • Zhou, X., C. Lou, W. L. Li, and J. E. Shi, 1995: Ozone changes over China and low center over Tibetan Plateau. Chinese Science Bulletin, 40, 1396–1398.

    Google Scholar 

  • Zheng, X., X. Zhou, J. Tang, Y. Qin, and C. Chan, 2004: A meteorological analysis on a low tropospheric ozone event over Xining, North Western China on 26–27 July 1996. Atmos. Environ., 38, 261–271.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenshou Tian  (田文寿).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Tian, W., Chen, L. et al. Cross-tropopause mass exchange associated with a tropopause fold event over the northeastern Tibetan Plateau. Adv. Atmos. Sci. 27, 1344–1360 (2010). https://doi.org/10.1007/s00376-010-9129-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-010-9129-9

Key words

Navigation