Skip to main content
Log in

On the forced tangentially-averaged radial-vertical circulation within vortices. Part II: The transformation of Tropical Storm Haima (2004)

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A real case study for the transformation of Tropical Storm (TS) Haima (2004) into an extratropical cyclone (EC) is carried out numerically since, after landfall, Haima (2004) (as an EC) brought severe weather to a large area (from the south to the north) in China during 13–16 September 2004. With the linear diagnostic model (derived in a previous study) for the tangentially-averaged radial-vertical circulation within vortices moving on the spherical Earth, Haima’s (2004) life cycle is reconstructed noticeably well. Therefore, the major contributor could be identified confidently for Haima’s (2004) extratropical transition based on the diagnostic model outputs. The quantitative comparison shows that up to a 90% contribution to the innerregion updraft and a 55% contribution to the upper-layer outflow come from latent heating during Haima’s (2004) TS stage. Up to a 90% contribution to the inner-region updraft and nearly a 100% contribution to the upper-layer outflow come from the upper-layer eddy angular momentum advection (EAMA) during Haima’s (2004) EC stage. Representing the asymmetric structure of the storm, the predominantly positive contribution of the upper-layer EAMA to Haima’s (2004) transformation is closely associated with the Sshaped westerlies in the upper layer with two jets. One jet in the cyclonic-curvature area carries cyclonic angular momentum into the storm, and the other jet in the anticyclonic-curvature area carries anticyclonic angular momentum out of the storm. Consequently, the newly-increased cyclonic tangential wind is deflected by the Coriolis force to the right to form the upper-layer outflow accompanied by the central-area rising motion, leading to Haima’s (2004) extratropical transition after its landfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674–701.

    Article  Google Scholar 

  • Baik, J.-J., M. DeMaria, and S. Raman, 1991: Tropical cyclone simulations with the Betts convective adjustment scheme. Part III: Comparisons with the Kuo convective parameterization. Mon. Wea. Rev., 119, 2889–2899.

    Article  Google Scholar 

  • Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 1715–1731.

    Article  Google Scholar 

  • Challa, M., and R. L. Pfeffer, 1980: Effects of eddy fluxes of angular momentum on model hurricane development. J. Atmos. Sci., 37, 1603–1618.

    Article  Google Scholar 

  • Chen, G., W. Li, Z. Yuan, and Z. Wen, 2005: Evolution mechanisms of the intraseasonal oscillation associated with the Yangtze River basin flood in 1998. Science in China (D), 48, 957–967.

    Article  Google Scholar 

  • Delsol, F., K. Miyakoda, and R. H. Clarke, 1971: Parameterized processes in the surface boundary layer of an atmospheric circulation model. Quart. J. Roy. Meteor. Soc., 97, 181–208.

    Article  Google Scholar 

  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420–430.

    Article  Google Scholar 

  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Technical Report NESDIS 11, 47pp.

  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophysica Norvegica, 5, 19–60.

    Google Scholar 

  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 2313–2329.

    Article  Google Scholar 

  • Haltiner, G. J., and R. T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. 2nd ed., John Wiley & Sons Inc, New York, 477pp.

    Google Scholar 

  • Harr, P. A., R. L. Elsberry, and T. F. Hogan, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics. Mon. Wea. Rev., 128, 2634–2653.

    Article  Google Scholar 

  • Holland, G. J., 1983: Angular momentum transports in tropical cyclones. Quart. J. Roy. Meteorol. Soc., 109, 187–209.

    Article  Google Scholar 

  • Holloway, J. L. Jr, and S. Manabe, 1971: Simulation of climate by a global general circulation model. I. Hydrologic cycle and heat balance. Mon. Wea. Rev., 99, 335–370.

    Article  Google Scholar 

  • Johnson, D. R., and Z. Yuan, 1998: On the forcing of the radial-vertical circulation within cyclones—Part 1: Concepts and equations. Adv. Atmos. Sci., 15, 346–369.

    Article  Google Scholar 

  • Johnson, D. R., and Z. Yuan, 1999: The role of diabatic heating, torques and stabilities in forcing the radial-vertical circulation within cyclones. Part III: Case study of lee-side cyclones. Adv. Atmos. Sci., 16, 31–63.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kitabatake, N., 2002: Extratropical transformation of typhoon Vicki (9807): Structural change and the role of upper-tropospheric disturbances. J. Meteor. Soc. Japan, 80, 229–247.

    Article  Google Scholar 

  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2002: Extratropical transition of western North Pacific tropical cyclones: Midlatitude and tropical cyclone contributions to reintensification. Mon. Wea. Rev., 130, 2240–2259.

    Article  Google Scholar 

  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096.

    Article  Google Scholar 

  • Krishnamurti, T. N., 1968: A diagnostic balance model for studies of weather systems of low and high latitudes, Rossby number less than 1. Mon. Wea. Rev., 96, 197–207.

    Article  Google Scholar 

  • Kuo, H. L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 40–63.

    Article  Google Scholar 

  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 1232–1240.

    Article  Google Scholar 

  • Li, Y., L. Chen, and X. Lei, 2006: Numerical study on impacts of upper-level westerly trough on the extratropical transition process of Typhoon Winnie (1997). Acta Meteorologica Sinica, 64, 552–563. (in Chinese)

    Google Scholar 

  • Möller, J. D., and L. J. Shapiro, 2002: Balanced contributions to the intensification of Hurricane Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130, 1866–1881.

    Article  Google Scholar 

  • Molinari, J., and D. Vollaro, 1990: External influences on hurricane intensity. Part II: Vertical structure and response of the hurricane vortex. J. Atmos. Sci., 47, 1902–1918.

    Article  Google Scholar 

  • Molinari, J., D. Vollaro, and S. Skubis, 1993: Application of the Eliassen balanced model to real-data tropical cyclones. Mon. Wea. Rev., 121, 2409–2419.

    Article  Google Scholar 

  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3–40.

    Article  Google Scholar 

  • Pauley, P. M., and S. J. Nieman, 1992: A comparison of quasigeostrophic and nonquasigeostrophic vertical motions for a model-simulated rapidly intensifying marine extratropical cyclone. Mon. Wea. Rev., 120, 1108–1134.

    Article  Google Scholar 

  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805–821.

    Article  Google Scholar 

  • Persing, J., M. T. Montgomery, and R. E. Tuleya, 2002: Environmental interactions in the GFDL hurricane model for Hurricane Opal. Mon. Wea. Rev., 130, 298–317.

    Article  Google Scholar 

  • Puri, K., and M. J. Miller, 1990: Sensitivity of ECMWF analyses-forecasts of tropical cyclones to cumulus parameterization. Mon. Wea. Rev., 118, 1709–1741.

    Article  Google Scholar 

  • Riehl, H., 1954: Tropical Meteorology. McGraw-Hill, Ed., New York, 392pp.

    Google Scholar 

  • Schneider, S., 1996: Encyclopedia of Climate and Weather. Oxford University Press, New York, 929pp.

    Google Scholar 

  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687–1697.

    Article  Google Scholar 

  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394.

    Article  Google Scholar 

  • Shen, B.-W., and Coauthors, 2006: Hurricane forecasts with a global mesoscale-resolving model: Preliminary results with Hurricane Katrina (2005). Geophys. Res. Lett., 33, L13813.

    Article  Google Scholar 

  • Smagorinsky, J., S. Manabe, and J. L. Holloway Jr., 1965: Numerical results from a nine-level general circulation model of the atmosphere. Mon. Wea. Rev., 93, 727–768.

    Article  Google Scholar 

  • Smith, R. K., and M. T. Montgomery, 2008: Balanced boundary layers used in hurricane models. Quart. J. Roy. Meteorol. Soc., 134, 1385–1395.

    Article  Google Scholar 

  • Strikwerda, J. C., 2004: Finite Difference Schemes and Partial Differential Equations. 2nd ed., Society for Industrial and Applied Mathematics, 435pp.

  • Sundqvist, H., 1970: Numerical simulation of the development of tropical cyclones with a ten-level model. Part I. Tellus, 22, 359–390.

    Article  Google Scholar 

  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14291–14324.

    Article  Google Scholar 

  • Wang, W., and N. L. Seaman, 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125, 252–278.

    Article  Google Scholar 

  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627.

    Article  Google Scholar 

  • Yuan, Z., 1994: The role of the diabatic heating, torques and stability in forcing the meridional circulation within cyclones. Ph. D dissertation, University of Wisconsin Madison, 198pp.

  • Yuan, Z., and D. R. Johnson, 1998: The role of diabatic heating, torques and stabilities in forcing the radial-vertical circulation within cyclones. Part II: Case study of extratropical and tropical cyclones. Adv. Atmos. Sci., 15, 447–488.

    Article  Google Scholar 

  • Yuan, Z., and M. Jian, 2002: On the forced tangentiallyaveraged radial-vertical circulation within vortices. Part I: Concepts and equations. Adv. Atmos. Sci., 19, 953–964.

    Article  Google Scholar 

  • Yuan, Z., T. Wang, and Y. Guo, 2000: A numerical simulation of local-zonal-mean Hadley circulation over east Asia. I. Schemes. Acta Scientiarum Naturalium Universitatis Sunyatseni, 39, 112–116. (in Chinese)

    Google Scholar 

  • Zehnder, J. A., 2001: A comparison of convergence- and surface-flux-based convective parameterizations with applications to tropical cyclogenesis. J. Atmos. Sci., 58, 283–301.

    Article  Google Scholar 

  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 2745–2763.

    Article  Google Scholar 

  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the canadian climate centre general circulation model. Atmos.-Ocean, 33, 407–446.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuojian Yuan  (袁卓建).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, YK., Liang, CX., Liang, Q. et al. On the forced tangentially-averaged radial-vertical circulation within vortices. Part II: The transformation of Tropical Storm Haima (2004). Adv. Atmos. Sci. 28, 1143–1158 (2011). https://doi.org/10.1007/s00376-010-0060-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-010-0060-x

Key words

Navigation