Skip to main content
Log in

Dust storm ensemble forecast experiments in East Asia

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The ensemble Kalman filter (EnKF), as a unified approach to both data assimilation and ensemble forecasting problems, is used to investigate the performance of dust storm ensemble forecasting targeting a dust episode in the East Asia during 23–30 May 2007. The errors in the input wind field, dust emission intensity, and dry deposition velocity are among important model uncertainties and are considered in the model error perturbations. These model errors are not assumed to have zero-means. The model error means representing the model bias are estimated as part of the data assimilation process. Observations from a LIDAR network are assimilated to generate the initial ensembles and correct the model biases. The ensemble forecast skills are evaluated against the observations and a benchmark/control forecast, which is a simple model run without assimilation of any observations. Another ensemble forecast experiment is also performed without the model bias correction in order to examine the impact of the bias correction. Results show that the ensemble-mean, as deterministic forecasts have substantial improvement over the control forecasts and correctly captures the major dust arrival and cessation timing at each observation site. However, the forecast skill decreases as the forecast lead time increases. Bias correction further improved the forecasts in down wind areas. The forecasts within 24 hours are most improved and better than those without the bias correction. The examination of the ensemble forecast skills using the Brier scores and the relative operating characteristic curves and areas indicates that the ensemble forecasting system has useful forecast skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. L., 1997: Impact of dynamical constraints on the selection of initial conditions for ensemble predictions: Low order perfect model results. Mon. Wea. Rev., 125, 2 969–2 983.

    Article  Google Scholar 

  • Annan, J. D., and J. C. Hargreaves, 2004: Efficient parameter estimation for a highly chaotic system. Tellus, 56A, 520–526.

    Google Scholar 

  • Annan, J. D., J. C. Hargreaves, N. R. Edwards, and R. Marsh, 2005a: Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter. Ocean Modelling, 8, 135–154.

    Article  Google Scholar 

  • Annan, J. D., D. J. Lunt, J. C. Hargreaves, and P. J. Valdes, 2005b: Parameter estimation in an atmospheric GCM using the ensemble Kalman filter. Nonlinear Processes Geophys., 12, 363–371.

    Google Scholar 

  • Bowler, N., 2006: Comparison of error breeding, singular vectors, random perturbations and ensemble Kalman filter perturbation strategies on a simple model. Tellus, 58A, 538–548.

    Google Scholar 

  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 1–3.

    Article  Google Scholar 

  • Candille, G., C. Côté, P. L. Houtekamer, and G. Pellerin, 2007: Verification of an ensemble prediction system against observations. Mon. Wea. Rev., 135, 2 688–2 699.

    Article  Google Scholar 

  • Chin, M., and Coauthors, 2003: A global aerosol model forecast for the ACE-Asia field experiment. J. Geophys. Res., 108(D23), 8654, doi: 10.1029/2003JD003642.

    Article  Google Scholar 

  • Descamps, L., and O. Talagrand, 2007: On some aspects of the definition of initial conditions for ensemble prediction. Mon. Wea. Rev., 135, 3 260–3 272.

    Article  Google Scholar 

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99(C5), 10 143–10 162.

    Article  Google Scholar 

  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dynamics, 53, 343–367.

    Article  Google Scholar 

  • Evensen, G., 2004: Sampling strategies and square root analysis schemes for the EnKF. Ocean Dynamics, 54, 539–560.

    Article  Google Scholar 

  • Evensen, G., 2006: Data Assimilation: The Ensemble Kalman Filter. Springer, German, 280pp.

    Google Scholar 

  • Fernald, F. G., 1984: Analysis of atmospheric LIDAR observations: Some comments. Appl. Opt., 23, 652–653.

    Article  Google Scholar 

  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757.

    Article  Google Scholar 

  • Gong, S. L., X. Y. Zhang, T. L. Zhao, I. G. McKendry, D. A. Jaffe, and N. M. Lu, 2003: Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation. J. Geophys. Res., 108(D9), 4262, doi: 10.1029/2002JD002633.

    Article  Google Scholar 

  • Hamill, T. M., C. Snyder, and R. E. Morss, 2000: A comparison of probabilistic forecasts from bred, singular-vector, and perturbed observation ensembles. Mon. Wea. Rev., 128, 1 835–1 851.

    Google Scholar 

  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error co-variances in an ensemble Kalman Filter. Mon. Wea. Rev., 129, 2 776–2 790.

    Google Scholar 

  • Hanna, S. R., and Coauthors, 2001: Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain. Atmos. Environ., 35, 891–903.

    Article  Google Scholar 

  • Hara, Y., K. Yumimoto, I. Uno, A. Shimizu, N. Sugimoto, Z. Liu, and D. M. Winker, 2008: Asian dust outflow in the PBL and free atmosphere retrieved by NASA CALIPSO and an assimilated dust transport model. Atmospheric Chemistry and Physics Discussions, 8, 8 715–8 742.

    Google Scholar 

  • Harvey, L. O., K. R. Hammond, C. M. Lusk, and E. F. Mross, 1992: The application of signal detection theory to weather forecasting behavior. Mon. Wea. Rev., 120, 863–833.

    Article  Google Scholar 

  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796–811.

    Article  Google Scholar 

  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123–137.

    Article  Google Scholar 

  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica (D), 230, 112–126.

    Google Scholar 

  • Kalnay, E., B. Hunt, E. Ott, and I. Szunyogh, 2006: Ensemble forecasting and data assimilation: two problems with the same solution? Chapter 7, Predictability of Weather and Climate, T. Palmer and R. Hagedron, Eds., Cambridge University Press, 702pp.

  • Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 3 515–3 539.

    Article  Google Scholar 

  • Lin, C. Y., J. Zhu, and C. G, Lu, 2006: Comparison of Ensemble Kalman Filter and optimal interpolation in different observational networks. Climatic and Environmental Research, 11, 553–564. (in Chinese)

    Google Scholar 

  • Lin, C. Y., Z. F. Wang and J. Zhu, 2008a: An Ensemble Kalman Filter for severe dust storm data assimilation over China. Atmospheric Chemistry and Physics, 8, 2 975–2 983.

    Google Scholar 

  • Lin, C. Y., J. Zhu, and Z. F. Wang, 2008b: Model bias correction for dust storm forecast using ensemble Kalman filter. J. Geophys. Res., 113(D14306), doi: 10.1029/2007JD009498.

  • Lin, C. Y., J. Zhu, and Z. F. Wang, 2009: Uncertainty analysis of a dust transport model. Chinese J. Atmos. Sci., 33(2). 232–240. (in Chinese)

    Google Scholar 

  • Liu, M., D. L. Westphal, S. Wang, A. Shimizu, N. Sugimoto, J. Zhou, and Y. Chen, 2003: A highresolution numerical study of the Asian dust storms of April 2001. J. Geophys. Res., 108(D23), 8653, doi: 10.1029/2002JD003178.

    Article  Google Scholar 

  • Liu, Z., N. Sugimoto, and T. Murayama, 2002: Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution LIDAR and Raman LIDAR. Appl. Opt., 41, 2 760–2 767.

    Google Scholar 

  • Liu, Z.-Q., and F. Rabier, 2002: The interaction between model resolution, observation resolution and observation density in data assimilation: A one-dimensional study. Quart. J. Roy. Meteor. Soc., 128, 1 367–1 386.

    Article  Google Scholar 

  • Marticorena, B., and G. Bergametti, 1995: Modeling the atmospheric dust cycle: 1. Design of a soil-derived emission scheme. J. Geophys. Res., 100(D8), 16 415–16 430.

    Article  Google Scholar 

  • Marticorena, B., G. Bergametti, B. Aumont, Y. Callot, C. N’Doume, and M. Legrand, 1997: Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources. J. Geophys. Res., 102(D4), 4 387–4 404.

    Article  Google Scholar 

  • Mason, S. J., 1982: A model for assessment of weather forecasts. Australian Meteorology Magazine, 30, 291–303.

    Google Scholar 

  • Mason, S. J., and N. E. Graham, 1999: Conditional probabilities, relative operating characteristics, and relative operating levels. Wea. Forecasting, 14, 713–725.

    Article  Google Scholar 

  • Nickovic, S., G. Kallos, A. Papadopoulos, and O. Kalaliagou, 2001: A model for prediction of desert dust cycle in the atmosphere, J. Geophys. Res., 106(D16), 18 113–18 129.

    Article  Google Scholar 

  • Niu, T., S. L. Gong, G. F. Zhu, H. L. Liu, X. Q. Hu, C. H. Zhou, Y. Q. Wang, and X. Y. Zhang, 2008: Data assimilation of dust aerosol observations for CUACE/Dust forecasting system. Atmospheric Chemistry and Physics, 8, 3 473–3 482

    Google Scholar 

  • Oke, P. R., J. S. Allen, R. N. Miller, G. D. Egbert, P. M. Kosro, 2002: Assimilation of surface velocity data into a primitive equation coastal ocean model. J. Geophys. Res., 107, 3122, doi: 10.1029/2000JC000511.

    Article  Google Scholar 

  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415–428.

    Google Scholar 

  • Park, S., and H. In, 2003: Parameterization of dust emission for the simulation of the yellow sand (Asian dust) event observed in March 2002 in Korea. J. Geophys. Res., 108(D19), 4618, doi: 10.1029/2003JD003484.

    Article  Google Scholar 

  • Pérez, C., S. Nickovic, J. M. Baldasano, M. Sicard, F. Rocadenbosch, and V. E. Cachorro, 2006: A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling. J. Geophys. Res., 111, D15214, doi: 10.1029/2005JD006579.

    Article  Google Scholar 

  • Shao, Y., and Coauthors, 2003: Northeast Asian dust storms: Real-time numerical prediction and validation. J. Geophys. Res., 108(D22), 4691, doi: 10.1029/2003JD003667.

    Article  Google Scholar 

  • Shimizu, A., N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, and K. Aoki 2004 Continuous observations of Asian dust and other aerosols by dual-polarization lidars in China and Japan during ACE-Asia. J. Geophys. Res., 109, D19S17, doi: 10.1029/2002JD003253.

    Article  Google Scholar 

  • Sugimoto, N., and coauthors, 2006: Network observations of Asian dust and air pollution aerosols using two-wavelength polarization lidars. 23rd International Laser Radar Conference, July 2006, Nara, Japan (23ILRC, ISBN 4-9902916-0-3), 851–854.

  • Swets, J. A., 1973: The relative operating characteristic in psychology. Science, 182, 990–1 000.

    Article  Google Scholar 

  • Tong, M, and M. Xue, 2008a: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part I: Sensitivity analysis and parameter identifiability. Mon. Wea. Rev., 136, 1 630–1 648.

    Google Scholar 

  • Tong, M, and M. Xue, 2008b: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part II: Parameter estimation experiments. Mon. Wea. Rev., 136, 1 649–1 668.

    Google Scholar 

  • Uematsu, M., Z. Wang, and I. Uno, 2003: Atmospheric input of mineral dust to the western North Pacific region based on direct measurements and a regional chemical transport model. Geophys. Res. Lett., 30, 1342, doi: 10.1029/2002GL016645.

    Article  Google Scholar 

  • Uno, I., H. Amano, S. Emori, K. Kinoshita, I. Matsui, and N. Sugimoto, 2001: Trans-Pacific yellow sand transport observed in April 1998: A numerical simulation. J. Geophys. Res., 106(D16), 18 331–18 344.

    Article  Google Scholar 

  • Uno, I., and Coauthors, 2003: Regional chemical weather forecasting system CFORS: Model descriptions and analysis of surface observations at Japanese island stations during the ACE-Asia experiment. J. Geophys. Res., 108(D23), 8668, doi: 10.1029/2002JD002845.

    Article  Google Scholar 

  • Uno, I., and Coauthors, 2004: Numerical study of Asian dust transport during the springtime of 2001 simulated with the Chemical Weather Forecasting System (CFORS) model. J. Geophys. Res., 109, D19S24, doi: 10.1029/2003JD004222.

    Article  Google Scholar 

  • Uno, I., and Coauthors, 2006: Dust model intercomparison (DMIP) study over Asia: Overview. J. Geophys. Res., 111, D12213, doi: 10.1029/2005JD006575.

    Article  Google Scholar 

  • Wang, Z., H. Ueda, and M. Huang, 2000: A deflation module for use in modeling long-range transport of yellow sand over East Asia. J. Geophys. Res., 105(D22), 26 947–26 960.

    Article  Google Scholar 

  • Wang, Z., H. Akimoto, and I. Uno, 2002: Neutralization of soil aerosol and its impact on the distribution of acid rain over East Asia: Observations and model results. J. Geophys. Res., 107, 4389, doi: 10.1029/2001JD001040.

    Article  Google Scholar 

  • Wu, L., V. Mallet, M. Bocquet, and B. Sportisse, 2008: A comparison study of data assimilation algorithms for ozone forecasts. J. Geophys. Res., 113, D20310, doi: 10.1029/2008JD009991.

    Article  Google Scholar 

  • Yumimoto, K., I. Uno, N. Sugimoto, A. Shimizu, and S. Satake, 2007a: Adjoint inverse modeling of dust emission and transport over East Asia. Geophys. Res. Lett., 34, L08806, doi: 10.1029/2006GL028551.

    Article  Google Scholar 

  • Yumimoto, K., I. Uno, N. Sugimoto, A. Shimizu, Z. Liu, and D. M. Winker, 2007b: Numerical modeling of Asian dust emission and transport with adjoint inversion using LIDAR network observations. Atmospheric Chemistry and Physics Discussions, 7, 15 955–15 987.

    Google Scholar 

  • Zhang, X. Y., R. Akimoto, G. H. Zhu, T. Chen, and G. Y. Zhang, 1998: Concentrations, size-distribution and deposition of mineral aerosol over Chinese desert regions. Tellus, 50B, 317–330.

    Google Scholar 

  • Zhou, C. H., and Coauthors, 2008: Development and evaluation of an operational SDS forecasting system for East Asia: CUACE/DUST. Atmospheric Chemistry and Physics, 8, 787–798.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Zhu  (朱江).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Lin, C. & Wang, Z. Dust storm ensemble forecast experiments in East Asia. Adv. Atmos. Sci. 26, 1053–1070 (2009). https://doi.org/10.1007/s00376-009-8218-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-009-8218-0

Key words

Navigation