Skip to main content
Log in

The characteristics and parameterization of aerodynamic roughness length over heterogeneous surfaces

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Aerodynamic roughness length (z 0m) is a key factor in surface flux estimations with remote sensing algorithms and/or land surface models. This paper calculates z 0m over several land surfaces, with 3 years of experimental data from Xiaotangshan. The results show that z 0m is direction-dependent, mainly due to the heterogeneity of the size and spatial distribution of the roughness elements inside the source area along different wind directions. Furthermore, a heuristic parameterization of the aerodynamic roughness length for heterogeneous surfaces is proposed. Individual z 0m over each surface component (patch) is calculated firstly with the characteristic parameters of the roughness elements (vegetation height, leaf area index, etc.), then z 0m over the whole experimental field is aggregated, using the footprint weighting method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azevedo, P. V., and S. B. Verma, 1986: Aerodynamic characteristics of grain sorghum. Agricultural and Forestry Meteorology, 38, 193–204.

    Article  Google Scholar 

  • Brutsaert, W., 1982: Evaporation into the Atmosphere, Theory, History, and Applications. D.Reidel, Boston, MA., 299pp.

    Google Scholar 

  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181–189.

    Article  Google Scholar 

  • Cai, X., and M. Y. Leclerc, 2007: Forward-in-time and backward-in-time dispersion in the convective boundary layer: The concentration footprint. Bound.-Layer Meteor., 123, 201–218.

    Article  Google Scholar 

  • Chen, J., J. Wang, and Y. Mitsuta, 1993: An independent method to determine the surface roughness length. Chinese J. Atmos. Sci., 17(1), 21–26. (in Chinese)

    Google Scholar 

  • Choudhury, B. J., and J. L. Monteith, 1988: A four-layer model for the heat budget of homogeneous land surfaces. Quart. J. Roy. Meteor. Soc., 11, 373–398.

    Article  Google Scholar 

  • Dai, Y., and Coauthors, 2003: The common land model (CLM). Bull. Amer. Meteor. Soc., 84(8), 1013–1023.

    Article  Google Scholar 

  • Dickinson, R. E., A. Henderson-sellers, and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as coupled to the NCAR Community Climate Model. National Center for Atmospheric Research (NCAR) Tech. Note, NCAR/TN-387+STR, 72pp.

  • Dorman, J. L., and P. J. Sellers, 1989: A global climatology of albedo, roughness length, and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere Model (SiB). J. Appl. Meteor., 21, 833–855.

    Article  Google Scholar 

  • Fiedler, F., and H. A. Panofsky, 1972: The geostrophic drag coefficient and the “effective” roughness length. Quart. J. Roy. Meteor. Soc., 98, 213–221.

    Google Scholar 

  • Garratt, J. R., 1992: The atmospheric boundary layer. Cambridge Atmospheric and Space Science Series, Cambridge University Press, Cambridge, UK, 316pp.

    Google Scholar 

  • Hatfield, J. L., 1989: Aerodynamic properties of partial canopies. Agricultural and Forestry Meteorology, 46, 15–22.

    Article  Google Scholar 

  • Hiyama, T., M. Sugita, and K. Kotoda, 1996: Regional roughness parameters and momentum fluxes over a complex area. J. Appl. Meteor., 35, 2179–2190.

    Article  Google Scholar 

  • Jennifer, M., and W. Brusaert, 1998: Momentum roughness and view-angle dependent heat roughness at a Southern Great Plains test-site. J. Hydrol., 211, 61–68.

    Article  Google Scholar 

  • Jia, L., and J. Wang, 1999: The local and effective aerodynamic roughness length of a complex landscape of oasis and desert. Acta Meteorologica Sinica, 57(3), 346–357. (in Chinese)

    Google Scholar 

  • Jia, L., and Coauthors, 2003: Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements. Physics and Chemistry of the Earth, 28, 75–88.

    Google Scholar 

  • Kormann, R., and F. X. Meixner, 2001: An analytical footprint model for non-neutral stratification. Bound.-Layer Meteor., 99, 207–224.

    Article  Google Scholar 

  • Kustas, W. P., B. J. Choudhury, K. E. Kunkel, and L. W. Gay, 1989: Estimate of the aerodynamic roughness parameters over an incomplete canopy cover of cotton. Agricultural and Forestry Meteorology, 46, 91–105.

    Article  Google Scholar 

  • Liu, S., L. Lu, D. Mao, and L. Jia, 2007a: Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements. Hydrology and Earth System Sciences, 11(2), 769–783.

    Article  Google Scholar 

  • Liu, S., G. Hu, L. Lu, and D. Mao, 2007b: Estimation of regional evapotranspiration by TM/ETM+ data over heterogeneous surfaces. Photogrammetric Engineering and Remote Sensing, 73(10), 1169–1178.

    Google Scholar 

  • Massman, W., 1997: An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure. Bound.-Layer Meteor., 83, 407–421.

    Article  Google Scholar 

  • Mason, P. J., 1988: The formation of areally averaged roughness lengths. Quart. J. Roy. Meteor. Soc., 114, 399–420.

    Article  Google Scholar 

  • Marshall, J. K., 1971: Drag measurement in roughness arrays of varying density and distribution. Agricultural Meteorology, 8, 269–292.

    Article  Google Scholar 

  • Martano, P., 2000: Estimation of surface roughness length and displacement height from single-level sonic anemometer data. J. Appl. Meteor., 39, 708–715.

    Article  Google Scholar 

  • Mathias, A. D., W. P. Kustas, L. W. Gay, D. I. Cooper, L. M. Alves, and P. J. Pinter, 1990: Aerodynamic parameters for a sparsely roughened surface composed of small cotton plants and ridged soil. Remote Sens. Environ., 32, 143–153.

    Article  Google Scholar 

  • Menenti, M., and J. C. Ritchie, 1994: Estimation of effective aerodynamic roughness of Walnut Gulch watershed with laser altimeter measurements. Water Resources Research, 30(5), 1329–1337.

    Article  Google Scholar 

  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857–861.

    Article  Google Scholar 

  • Schmid, H. P., 2002: Footprint modeling for vegetation and atmosphere exchange studies: a review and perspective. Agricultural and Forest Meteorology, 113, 159–183.

    Article  Google Scholar 

  • Schuepp, P. H., M. Y. Leclerc, J. I. Macpherson, and R. L. Desjardins, 1990: Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound.-Layer Meteor., 50, 355–373.

    Article  Google Scholar 

  • Shaw, R. H., and A. R. Pereira, 1982: Aerodynamic roughness of a plant canopy: a numerical experiment. Agricultural Meteorology, 26, 51–65.

    Article  Google Scholar 

  • Sheng, P., J. Mao, J. Li, A. Zhang, J. Sang, and N. Pan, 2003: Atmospheric Physics. Peking University Press, Beijing, 522pp. (in Chinese)

    Google Scholar 

  • Sozzi, R., M. Favaron, and T. Georgiadis, 1998: Method for estimation of surface roughness and similarity function of wind speed vertical profile. J. Appl. Meteor., 37, 461–469.

    Article  Google Scholar 

  • Taylor, P. A., 1987: Comments and further analysis on effective roughness lengths for use in numerical three-dimensional models. Bound.-Layer Meteor., 39, 403–418.

    Article  Google Scholar 

  • Wang, H., and X. Wang, 1999: The Principles and Algorithm of Biological Boundary Layer. Meteorology Press, Beijing, 211pp. (in Chinese)

    Google Scholar 

  • Waters, R., R. Allen, W. Bastiaanssen, M. Tasumi, and R. Trezza, 2002: Surface energy balance algorithms for land, Idaho implementation, advanced training and users manual. Version 1.0, The Idaho Department of Water Resources, 98pp.

  • Webb, E. K., 1970: Profile relationships: The log-linear range and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 67–90.

    Article  Google Scholar 

  • Wieringa, J., 1986: Roughness-dependent geographical interpolation of surface wind speed averages. Quart. Roy. Meteor. Soc., 112, 867–889.

    Article  Google Scholar 

  • Yang, K., T. Koike, and D. Yang, 2003: Surface flux parameterization in the Tibetan Plateau. Bound.-Layer Meteor., 116, 245–262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaomin Liu  (刘绍民).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, L., Liu, S., Xu, Z. et al. The characteristics and parameterization of aerodynamic roughness length over heterogeneous surfaces. Adv. Atmos. Sci. 26, 180–190 (2009). https://doi.org/10.1007/s00376-009-0180-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-009-0180-3

Key words

Navigation