Skip to main content
Log in

A flexible coupled ocean-atmosphere general circulation model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Based on the National Center for Atmospheric Research (NCAR) Climate System Model version 1 (CSM-1), a Flexible coupled General Circulation Model version 0 (FGCM-0) is developed in this study through replacing CSM-1’s oceanic component model with IAP L30T63 global oceanic general circulation model and some necessary modifications of the other component models. After the coupled model FGCM-0 is spun up for dozens of years, it has been run for 60 years without flux correction. The model does not only show the reasonable long-term mean climatology, but also reproduce a lot of features of the interannual variability of climate, e.g. the ENSO-like events in the tropical Pacific Ocean and the dipole mode pattern in the tropical Indian Ocean. Comparing FGCM-0 with the NCAR CSM-1, some common features are found, e.g. the overestimation of sea ice in the North Pacific and the simulated double ITCZ etc. The further analyses suggest that they may be attributed to errors in the atmospheric model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D., 1999: Extremes in the Indian Ocean. Nature, 401,337–338.

    Article  Google Scholar 

  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere—ocean model: Influence of the basic state, ocean geometry and nonlinearity..J. Almos. Sci., 46, 1687–1712.

    Article  Google Scholar 

  • Bonan, G. B., 1998: The land surface climatology of the NCAR land surface model coupled to the NCAR community climate model. J. Climate, 11, 1307–1326.

    Article  Google Scholar 

  • Boville, B. A., and P. R. Gent, 1998: The NCAR climate system model, Version One..J. Climate, 11, 1115–1130.

    Article  Google Scholar 

  • Boville, B. A., and J. W. Hurrell, 1998: A comparison of the atmospheric circulations simulated by the CCM3 and CSM1. J. Climate, 11, 1327–1341.

    Article  Google Scholar 

  • Chen Kerning, Zhang Xuehong, Jin Xiangze, and Lin Wuyin, 1997: A global coupled ocean-atmosphere model for studying global climate change, I: Model configuration and performance. Acta Oceanologica Sinica, 19(3), 22–32 (in Chinese).

    Google Scholar 

  • Covey, C, 1994: Global ocean circulation and equator-pole heat transport as a function of ocean GCM resolution. Report No. 19, Program for Climate Model Diagnosis and Intercomparison (Lawrence Livermore National Laboratory, Livermore, CA), 30pp.

  • da Silva, A. M., C. C. Young, and S. Levitus, 1994: Atlas of surface marine data 1994, Vol.1: Algorithms and procedures, NOAA Atlas NECDIS 6, U.S. Dept. of Commerce, Washington, DC, 83pp.

  • Gates, W. L., 1992: AMIP: The atmospheric model intercomparison project. Bull. Amer. Meteor. Soc, 72, 1962–1970.

    Article  Google Scholar 

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models..J. Phys. Oceamogr., 20, 150–155.

    Article  Google Scholar 

  • Gent, P. R., F. O. Bryan, G. Danabasoglu, S. C. Doney, W. R. Holland, W. G. Large, and J. C. McWilliams, 1998: The NCAR climate system model global ocean component. J. Climate, 11, 1287–1306.

    Article  Google Scholar 

  • Gloersen, P., W. J. Campbell, D. J. Cavalieri, J. C. Comiso, C. L. Parkinson, and H. J. Zwally, 1992: Arctic and Antarctic Sea Ice, 1978–1987: Satellite passive-microwave observations and analysis. U.S. Natl. Aeron. Space Admin. Special Publ. NASA SP-511, 290pp.

  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models..J. Phys. Oceaiwgr., 1, 241–248.

    Article  Google Scholar 

  • Hellerman, S., and Rosenstein, M., 1983: Normal monthly wind stress data over the world ocean with error estimates. J. Phys. Oceaiwgr., 13, 1093–1104.

    Article  Google Scholar 

  • Holland, W. R., J. H. C. Chow, and F. O. Bryan, 1998: Application of a third-order upwind scheme in the NCAR ocean model..J. Climate, 11, 1487–1493.

    Article  Google Scholar 

  • Jin Xiangze, Zhang Xuehong, and Zhou Tianjun, 1999: Fundamental framework and experiments of the third generation of IAP/ LASG world ocean general circulation model. Advances in Atmospheric Sciences, 16(2), 197–215.

    Article  Google Scholar 

  • Kiehl, J. F., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Pasch, 1998: The National Center for Atmospheric Research community climate model: CCM3.,J. Climate, 11, 1131–1149.

    Article  Google Scholar 

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Ocean mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363–403.

    Article  Google Scholar 

  • Levitus, S., and T. P., Boyer, 1994: World Ocean Atlas 1994 Volume 3:Sahnity, NOAA Atlas NESDIS3. U. S. Department of Commerce, Washington, D. C. 99pp.

  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Mon. W eu. Rev., 123,2825–2838.

    Article  Google Scholar 

  • Meehl, A. M., 1995, Global coupled general circulation models. Bull. Amer. Meteor. Soc., 76, 951–957.

    Google Scholar 

  • Meehl, A. M., and J. M. Arblaster, 1998: The Asian-Australian monsoon and El Nino-Southern Oscillation in the NCAR climate system model.. J. Climate, 11, 1356–1385.

    Article  Google Scholar 

  • Meehl, G. A., G. J. Boer, C. Covey, M. Lauf, and R..J. Stouffer, 2000: The coupled model intercomparison project (CMIP). Bull. Amer. Meteor. Soc, 81,313–318.

    Article  Google Scholar 

  • Pacanowski, R. C, and G. Philander, 1981: Parameterization of vertical mixing in nurnerical models of the tropical ocean., J. Phys. Oceaiwgr., 11, 1442–1451.

    Google Scholar 

  • Parkinson, C. L., and W. M. Washington, 1979: A large-scale numerical model of sea ice..J. Geophys. Res., 84, 311–337.

    Article  Google Scholar 

  • Philander, S. G. H., D. Gu, D. Halpern, G. Lambert, N. -C. Lau, T. Li, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 2958–2972.

    Article  Google Scholar 

  • Rosati, A, and K., Miyakoda, 1988: A general circulation model for upper ocean circulation..J. Phys. Oceaiwgr., 18, 1601–1626.

    Article  Google Scholar 

  • Saji, N. N., B. N. Goswami, P. N. Vinayachandran, and T. Yamagala, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.

    Google Scholar 

  • Shea, D. J., K. E. Trenberth, and R. W. Reynolds, 1990: A global monthly mean sea surface temperature climatology. NCAR Tech. Note NCAR/ TN-345, 167pp.

  • Schopf, P. S., and M. J. Suares, 1988: Vacillations in a coupled ocean-atmosphere model..J. Almas. Sci., 45, 549–566.

    Google Scholar 

  • Weatherly, J. W., B. P. Briegleb, W. G. Large, and J. A. Maslanik, 1998: Sea ice and polar climate in the NCAR CSM. J. Climate, 11, 1472–1486.

    Article  Google Scholar 

  • Webster, P. J., A. Moore, J. Loschnigg, and R. Leben, 1999: Coupled ocean-atmosphere dynamics in the Indian Ocean. Nature, 401, 356–360.

    Article  Google Scholar 

  • Wu Guoxiong, and Coauthors, 1997: Global ocean-atmosphere-land system model of LASG (GOALS /LASG) and its performance in simulation study. Quart. J. Appl. Meteor., 8 (Supplement Issue), 15–28 (in Chinese).

    Google Scholar 

  • Ye Zhengqing, Dong Min, and Chen Jiabin, 2000: Simulated climate by National Climate Center GCM with the observed SST Study on the Short-range Climate Prediction System of China, Ding et al. Eds., China Meteorological Press, Beijing, 70–78pp. (in Chinese).

  • Yu Lisan, and M. M. Rienecker, 2000: Indian Ocean warming of 1997–1998. J. Geophys. Res., 105, 16923–16939.

    Article  Google Scholar 

  • Yu Yongqiang, A. Izard, Zhang Xuehong, and Guo Yufu, 2001: The response of IAP/LASG OGCM to wind stress. Chinese J. Almas. Sci., 25, 721–739 (in Chinese).

    Google Scholar 

  • Yu Yongqiang, Zhang Xuehong, Liu Hui, and Jin Xiangze, 2000: Schemes for coupling AGCM and OGCM. JAP Global Ocean-Atmosphere-Land System Model, Zhang etal., Eds., Science Press, Beijing, 100–114pp.

    Google Scholar 

  • Zhang Xuehong, Bao Ning, Yu Rucong, and Wang Wanqiu, 1992: Coupling scheme experiments based on an atmospheric and an oceanic GCM. Chinese Journal of Atmospheric Sciences, 16, 129–144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study is jointly supported by Chinese Academy of Sciences under Grant “ Hundred Talents” for “ Validation of Coupled Climate Model”, Chinese Academy of Sciences (CAS) “ Innovation Programme” under Grant ZKCX2-SW-210 and NSFC under Grant No. 49823002.

The authors wish to thank Prof. Wang Bin for the helpful discussion in the simulation of the Indian Ocean dipole pattern. The extended integration of FGC’M-0 would not have been finished without the help from the computer center of China Academy of Meteorological Sciences. We wish to thank Mr. Meng Nianqing for helping us tune the paralleling FGCM-0 codes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yongqiang, Y., Rucong, Y., Xuehong, Z. et al. A flexible coupled ocean-atmosphere general circulation model. Adv. Atmos. Sci. 19, 169–190 (2002). https://doi.org/10.1007/s00376-002-0042-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-002-0042-8

Key words

Navigation