Skip to main content
Log in

Scaling the microphysics equations and analyzing the variability of hydrometeor production rates in a controlled parameter space

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A set of microphysics equations is scaled based on the convective length and velocity scales. Comparisons are made among the dynamical transport and various microphysical processes. From the scaling analysis, it becomes apparent which parameterized microphysical processes present off-scaled influences in the integration of the set of microphysics equations.

The variabilities of the parameterized microphysical processes are also studied using the approach of a controlled parameter space. Given macroscopic dynamic and thermodynamic conditions in different regions of convective storms, it is possible to analyze and compare vertical profiles of these processes. Bulk diabatic heating profiles for a cumulus convective updraft and downdraft are also derived from this analysis.

From the two different angles, the scale analysis and the controlled-parameter space approach can both provide an insight into and an understanding of microphysics parameterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braun, S. A., and R. A. Houze Jr., 1995a: Diagnosis of hydrometeor profiles from area-mean vertical velocity data. Quart. J. Roy. Meteor. Soc, 121, 23–53.

    Article  Google Scholar 

  • Braun, S. A., and R. A. Houze Jr., 1995b: Melting and freezingin a mesoscale convective system. Quart. J. Roy. Meteor. Soc, 121,55–77.

    Article  Google Scholar 

  • Braun, S. A., and R. A. Houze Jr., 1996: The heat budget of amidlatitude squall line and implications for potential vorticity production. J. Atmos. Sci., 53, 1217–1240.

    Article  Google Scholar 

  • Browning, G. L., and H. O. Kreiss, 1986: Scaling and computation ofsmooth atmospheric motions. Tellus, 38A, 295–313.

    Article  Google Scholar 

  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 883 pp.

  • Fletcher, N. H., 1962: The Physics of Rainclouds. Cambridge University Press, 386pp.

  • Gallus, W. A., Jr., and R. H. Johnson, 1991: Heat and moisture budgets of an intense midlatitude squall line. J. Atmos. Sci., 48, 122–146.

    Article  Google Scholar 

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1995: A description ofthe fifth-generation Penn State / NCAR Mesoscale Model (MM5). NCAR Technical Note, NCAR/ TN-398+STR, National Center for Atmospheric Research, Boulder, CO, 138pp.

  • Heymsfield, A. J., D. N. Johnson, and J. E. Dye, 1978: Observations of moist adiabatic ascent in northeast Colorado cumulus congestus clouds. J. Atmos. Sci., 35, 1689–1703.

    Article  Google Scholar 

  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425–461.

    Article  Google Scholar 

  • Johnson, R. H., 1976: The role of convective-scale downdrafts in cumulus and synoptic-scale interactions. J. Atmos. Sci., 33, 1890–1910.

    Article  Google Scholar 

  • Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Mon. Wea. Rev., 112, 1590–1601.

    Article  Google Scholar 

  • Kessler, E., III, 1969: On the distribution and continuity of water substance in atmospheric circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc, 84pp.

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • Lu, C., and G. L. Browning, 2000: On discontinuous forcing generating rough initial conditions in 4DVAR data assimilation. J. Atmos. Sci., 57, 1646–1656.

    Article  Google Scholar 

  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166.

    Google Scholar 

  • McCumber, M., W. K. Tao, J. Simpson, R. Penc, and S. -T. Soong, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor., 30,985–1004.

    Article  Google Scholar 

  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708–721.

    Article  Google Scholar 

  • Murray, F. W., 1967: On the computation of saturation vapor pressure. J: Appl. Meteor., 6, 203–204.

    Article  Google Scholar 

  • Orville, H. D., and F. J. Kopp, 1977: Numerical simulation of the life history of a hailstorm. J. Atmos. Sci., 34, 1596–1618.

    Article  Google Scholar 

  • Pielke, R. A., 1984: Mesoscale Meteorological Modeling. Academic Press, 612pp.

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “ seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40,1185–1206.

    Article  Google Scholar 

  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949–2972.

    Article  Google Scholar 

  • Schultz, P., 1995: An explicit cloud physics parameterization for operational numerical weather prediction. Mon. Wea. Rev., 123,3331–3343.

    Article  Google Scholar 

  • Snook, J. S., J. M. Cram, and J. M. Schmidt, 1995: LAPS / RAMS: A nonhydrostatic mesoscale numerical modeling system configured for operational use. Tellus, 47A, 864–875.

    Google Scholar 

  • Sundqvist, H., 1978: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc, 104, 677–690.

    Article  Google Scholar 

  • Sundqvist, H., E. Berge, and J. E. KristjBnsson, 1989: Condensation and cloud studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117, 1641–1657.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, C., Schultz, P. & Browning, G.L. Scaling the microphysics equations and analyzing the variability of hydrometeor production rates in a controlled parameter space. Adv. Atmos. Sci. 19, 619–650 (2002). https://doi.org/10.1007/s00376-002-0004-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-002-0004-1

Key words

Navigation