Skip to main content
Log in

Effects of olive oil mill wastewater on chemical, microbiological, and physical properties of soil incubated under four different climatic conditions

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The objective of this study was to understand the degradation of the organic matter of olive mill wastewater (OMW) and its phytotoxic and water repellent effects in dependence on four different climatic conditions. We hypothesized that warm conditions with sufficient soil moisture ensure optimal biological activity and thus minimize negative effects of the OMW treatment. Therefore, OMW-treated soil was incubated for 60 days under four climatic conditions. During incubation, we monitored pH, contents of nitrate, manganese and phenolic compounds, soil respiration, soil water repellency, and δ13C. Additionally, calorific value and thermal stability of the soil organic matter at the beginning and end of incubation were determined. Soil samples of the wet-cold and moist-warm incubation were tested for phytotoxicity using a seed germination bioassay with Lepidium sativum. As a function of climatic conditions, positive and negative effects, e.g., addition of nutrients, phytotoxicity, and soil water repellency, were observed. Under dry-hot conditions, the soil was still water repellent after 60 days of incubation whereas the wet-hot, moist-warm, and wet-cold incubation show that soil would stay wettable if soil moisture before OMW treatment would be sufficient. Thus, the impact of OMW treatment on soil quality strongly depends on the environmental conditions which should favor an enhancement of microbial activity to minimize negative effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aburto J, Alric I, Thiebaud S, Borredon E, Bikiaris D, Prinos J, Panayiotou C (1999) Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. J Appl Polym Sci 74:1440–1451. doi:10.1002/(SICI)1097-4628(19991107)74:6<1440::AID-APP17>3.0.CO;2-V

    Article  CAS  Google Scholar 

  • Aranda V, Calero J, Plaza I, Ontiveros-Ortega A (2016) Long-term effects of olive mill pomace co-compost on wettability and soil quality in olive groves. Geoderma 267:185–195. doi:10.1016/j.geoderma.2015.12.027

    Article  CAS  Google Scholar 

  • Azbar N, Bayram A, Filibeli A, Muezzinoglu A, Sengul F, Ozer A (2004) A review of waste management options in olive oil production. Crit Rev Environ Sci Technol 34:209–247

    Article  CAS  Google Scholar 

  • Barbera AC, Maucieri C, Cavallaro V, Ioppolo A, Spagna G (2013) Effects of spreading olive mill wastewater on soil properties and crops: a review. Agr Water Manage 119:43–53

    Article  Google Scholar 

  • Barbera AC, Maucieri C, Ioppolo A, Milani M, Cauallaro V (2014) Effects of olive mill wastewater physico-chemical treatments on polyphenol abatement and Italian ryegrass (Lolium multiflorum Lam.) germinability. Water Res 52:275–281. doi:10.1016/j.watres.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  • Beales N (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr Rev Food Sci Food Saf 3:1–20

    Article  CAS  Google Scholar 

  • Bisdom EBA, Dekker LW, Schoute JFT (1993) Water repellency of sieve fractions from sandy soils and relationships with organic material on soil structure. Geoderma 56:105–118

    Article  Google Scholar 

  • Blume HP, Bruemmer G, Schwertmann U, Horn R, Koegel-Knabner I, Stahr K, Auerswald K, Beyer L, Hartmann A, Litz N, Scheinost A, Stanjek H, Welp G (2002) Scheffer/Schachtschabel: Lehrbuch der Bodenkunde, 15. Auflage, Enke Stuttgart

    Google Scholar 

  • Borken W, Muhs A, Beese F (2002) Changes in microbial and soil properties following compost treatment of degraded temperate forest soils. Soil Biol Biochem 34:403–412

    Article  CAS  Google Scholar 

  • Box JD (1983) Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Resour 17:511–525

    CAS  Google Scholar 

  • Buchmann C, Felten A, Peikert B, Muñoz K, Bandow N, Dag A, Schaumann GE (2015) Development of phytotoxicity and composition of a soil treated with olive mill wastewater (OMW): an incubation study. Plant Soil 386:99–112. doi:10.1007/s11104-014-2241-3

    Article  CAS  Google Scholar 

  • Cabrera F, López R, Martinez-Bordiú A, de Lome ED, Murillo JM (1996) Land treatment of olive oil mill wastewater. Int Biodeterior Biodegradation 38:215–225

    Article  Google Scholar 

  • Carraro L, Fasolato L, Montemurro F, Martino ME, Balzan S, Servili M, Novelli E, Cardazzo B (2014) Polyphenols from olive mill waste affect biofilm formation and motility in Escherichia coli K-12. Microb Biotechnol 7:265–275. doi:10.1111/1751-7915.12119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaari L, Elloumi N, Gargouri K, Bourouina B, Michichi T, Kallel M (2014) Evolution of several soil properties following amendment with olive mill wastewater. Desal Water Treat 52:2180–2186. doi:10.1080/19443994.2013.821030

    Article  CAS  Google Scholar 

  • Chiesura A, Marano V, De Francesco P, Maraglino A (2005) Verso la sostenibilità della filiera olivicola: trattamento, recupero e valorizzazione dei sottoprodotti oleari. UNASCO, Roma

    Google Scholar 

  • Dec J, Haider K, Bollag J-M (2003) Release of substituents from phenolic compounds during oxidative coupling reactions. Chemosphere 52:549–556. doi:10.1016/S0045-6535(03)00236-4

    Article  CAS  PubMed  Google Scholar 

  • Dell’Abate MT, Benedetti A, Brookes PC (2003) Hyphenated techniques of thermal analysis for characterisation of soil humic substances. J Sep Sci 26:433–440

    Article  Google Scholar 

  • Di Serio MG, Lanza B, Mucciarella MR, Russi F, Lannucci E, Marfisi P, Madeo A (2008) Effects of olive mill wastewater spreading on the physico-chemical and microbiological characteristics of soil. Int Biodeterior Biodegradation 62:403–407

    Article  Google Scholar 

  • Diehl D, Schaumann GE (2007) The nature of wetting on urban soil samples: wetting kinetics and evaporation assessed from sessile drop shape. Hydrol Process 21:2255–2265. doi:10.1002/hyp.6745

    Article  Google Scholar 

  • Diehl D, Bayer JV, Woche SK, Bryant R, Doerr SH, Schaumann GE (2010) Reaction of soil water repellency on artificially induced changes in soil pH. Geoderma 158:373–384

    Article  Google Scholar 

  • Doerr SH, Shakesby SH, Walsh RPD (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Sci Rev 51:33–65. doi:10.1016/S0012-8252(00)00011-8

    Article  Google Scholar 

  • El Hajouji H, Barje F, Pinelli E, Bailly JR, Richard C, Winterton P, Revel JC, Hafidi M (2008) Photochemical UV/TiO2 treatment of olive mill wastewater (OMW). Bioresour Technol 99:7264–7269. doi:10.1016/j.biortech.2007.12.054

    Article  Google Scholar 

  • Foth HD (1990) Fundamentals of soil science. John Wiley and Sons, Inc., New York

  • Gargouri K, Masmoudi M, Rhouma A (2014) Influence of olive mill wastewater (OMW) spread on carbon and nitrogen dynamics and biology of an arid sandy soil. Commun Soil Sci Plant Anal 45:1–14. doi:10.1080/00103624.2013.849727

    Article  CAS  Google Scholar 

  • Gianfreda L, Iamarino G, Scelza R, Rao MA (2006) Oxidative catalysts for the transformation of phenolic pollutants: a brief review. Biocatal Biotransformation 24:177–187. doi:10.1080/10242420500491938

    Article  CAS  Google Scholar 

  • Greco G, Colarieti ML, Toscano G, Iamarino G, Rao MA, Gianfreda L (2006) Mitigation of olive mill wastewater toxicity. J Agric Food Chem 54:6776–6782

    Article  CAS  PubMed  Google Scholar 

  • Groot C, Margolis L, Clark W (Eds) (1995) Physiological Ecology of Pacific Salmon in UBC Press, Vancouver, p 213

  • Hoekstra N, Bosker T, Lantinga E (2002) Effects of cattle dung from farms with different feeding strategies on germination and initial root growth of cress (Lepidium sativum L.). Agric Ecosyst Environ 93:189–196

    Article  Google Scholar 

  • Huang P (1990) Role of soil minerals in transformations of natural organics and xenobiotics in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry vol 6. Marcel Dekker, New York, pp 29–115

    Google Scholar 

  • Iamarino G, Rao MA, Gianfreda L (2009) Dephenolization and detoxification of olive-mill wastewater (OMW) by purified biotic and abiotic oxidative catalysts. Chemosphere 74:216–223. doi:10.1016/j.chemosphere.2008.09.061

    Article  CAS  PubMed  Google Scholar 

  • Ingham ER, Moldenke AR, Edwards CV (2000) Soil Biology Primer. Soil and Water Conservation Society, Ankeny, Iowa

  • Kapellakis I, Tzanakakis VA, Angelakis AN (2015) Land application-based olive mill wastewater management. Water 7:362–376. doi:10.3390/w7020362

    Article  Google Scholar 

  • Karpouzas DG, Ntougias S, Iskidou E, Rousidou C, Papadopoulou KK, Zervakis GI, Ehaliotis C (2010) Olive mill wastewater affects the structure of soil bacterial communities. Appl Soil Ecol 45:101–111

    Article  Google Scholar 

  • Keren Y, Borisover M, Bukhanovsky N (2015) Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater. Chemosphere 138:462–468. doi:10.1016/j.chemosphere.2015.06.085

    Article  CAS  PubMed  Google Scholar 

  • Komilis DP, Karatzas E, Halvadakis CP (2005) The effect of olive mill wastewater on seed germination after various pretreatment techniques. J Environ Manage 74:339–348

    Article  CAS  PubMed  Google Scholar 

  • Kurtz MP, Peikert B, Brühl C, Dag A, Zipori I, Shoqeir Hasan J, Schaumann GE (2015) Effects of olive mill wastewater on soil microarthropods and soil chemistry in two different cultivation scenarios in Israel and Palestinian Territories. Agr 5:857

    Google Scholar 

  • Laor Y, Saadi I, Raviv M, Medina S, Erez-Reifen D, Eizenbergc H (2011) Land spreading of olive mill wastewater in Israel: current knowledge, practical experience, and future research needs Israel. Israel J Plant Sci 59:39–51

    Article  Google Scholar 

  • Leinweber P, Schulten HR (1992) Differential thermal-analysis, thermogravimetry and in-source pyrolysis-mass spectrometry studies on the formation of soil organic-matter. Thermochim Acta 200:151–167. doi:10.1016/0040-6031(92)85112-9

    Article  CAS  Google Scholar 

  • Leinweber P, Schulten HR, Horte C (1992) Differential thermal analysis, thermogravimetry and pyrolysis-field ionization mass spectrometry of soil organic matter in particle-size fractions and bulk soil samples. Thermochim Acta 194:175–187

    Article  CAS  Google Scholar 

  • Li H-B, Cheng K-W, Wong C-C, Fan K-W, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776

    Article  CAS  Google Scholar 

  • Lopez-Capel E, Sohi SP, Gaunt JL, Manning DAC (2005) Use of thermogravimetry-differential scanning calorimetry to characterize modelable soil organic matter fractions. Soil Sci Soc Am J 69:136–140

    Article  CAS  Google Scholar 

  • Manning DAC, Lopez-Capel E, Barker S (2005) Seeing soil carbon: use of thermal analysis in the characterization of soil C reservoirs of differing stability. Mineralogical Mag 69:425–435. doi:10.1180/0026461056940260

    Article  CAS  Google Scholar 

  • McGibbon L, Russell NJ (1983) Fatty acid positional distribution in phospholipids of a psychrophilic bacterium during changes in growth temperature. Curr Microbiol 9:241–244. doi:10.1007/bf01567194

    Article  CAS  Google Scholar 

  • Millaleo R, Reyes-Diaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10:470–481. doi:10.4067/S0718-95162010000200008

    Article  Google Scholar 

  • Mohawesh O, Mahmoud M, Janssen M, Lennartz B (2014) Effect of irrigation with olive mill wastewater on soil hydraulic and solute transport properties. Int J Environ Sci Technol 11:927–934. doi:10.1007/s13762-013-0285-1

    Article  CAS  Google Scholar 

  • Muccioa Z, Jackson GP (2009) Isotope ratio mass spectrometry. Analyst 134:213–222. doi:10.1039/B808232D

  • Muller K, Deurer M (2011) Review of the remediation strategies for soil water repellency. Agric Ecosyst Environ 144:208–221. doi:10.1016/j.agee.2011.08.008

    Article  Google Scholar 

  • Niaounakis M, Halvadakis CP (2006) Olive processing waste management. Elsevier, Amsterdam

  • Peikert B, Schaumann GE, Keren Y, Bukhanovsky N, Borisover M, Garfha MA, Shoqueir JH, Dag A (2015) Characterization of topsoils subjected to poorly controlled olive oil mill wastewater pollution in West Bank and Israel. Agric Ecosyst Environ 199:176–189. doi:10.1016/j.agee.2014.08.025

    Article  CAS  Google Scholar 

  • Piotrowska A, Iamarino G, Rao MA, Gianfreda L (2006) Short-term effects of olive mill waste water (OMW) on chemical and biochemical properties of a semiarid Mediterranean soil. Soil Biol Biochem 38:600–610

    Article  CAS  Google Scholar 

  • Plante AF, Pernes M, Chenu C (2005) Changes in clay-associated organic matter quality in a C depletion sequence as measured by differential thermal analyses. Geoderma 129:186–199. doi:10.1016/j.geoderma.2004.12.043

    Article  CAS  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  CAS  PubMed  Google Scholar 

  • Roper MM (2004) The isolation and characterisation of bacteria with the potential to degrade waxes that cause water repellency in sandy soils. Aust J Soil Res 43:801–810. doi:10.1071/SR03153

    Google Scholar 

  • Russell N, Evans R, Ter Steeg P, Hellemons J, Verheul A, Abee T (1995) Membranes as a target for stress adaptation. Int J Food Microbiol 28:255–261

    Article  CAS  PubMed  Google Scholar 

  • Saadi I, Laor Y, Raviv M, Medina S (2007) Land spreading of olive mill wastewater: effects on soil microbial activity and potential phytotoxicity. Chemosphere 66:75–83

    Article  CAS  PubMed  Google Scholar 

  • Santos NA, Tavares MLA, Rosenhaim R, Silva FC, Fernandes VJ Jr, Santos IMG, Souza AG (2007) Thermogravimetricand calorimetric evaluation of babassu biodiesel obtained by the methanolroute. J Therm Anal Calorim 87:649–652. doi:10.1007/s10973-006-7765-1

    Article  CAS  Google Scholar 

  • Šantrůčková H, Bird M, Lloyd J (2000) Microbial processes and carbon‐isotope fractionation in tropical and temperate grassland soils. Funct Ecol 14:108–114

    Article  Google Scholar 

  • Scheu S, Parkinson D (1994) Changes in bacterial and fungal biomass C, bacterial and fungal biovolume and ergosterol content after drying, remoistening and incubation of different layers of cool temperate forest soils. Soil Biol Biochem 26:1515–1525

    Article  CAS  Google Scholar 

  • Shi A, Marschner P (2015) The number of moist days determines respiration in drying and rewetting cycles. Biol Fertil Soils 51:33–41. doi:10.1007/s00374-014-0947-2

    Article  CAS  Google Scholar 

  • Sierra J, Marti E, Montserrat G, Cruanas R, Garau MA (2001) Characterisation and evolution of a soil affected by olive oil mill wastewater disposal. Sci Total Environ 279:207–214

    Article  CAS  PubMed  Google Scholar 

  • Sierra J, Marti E, Garau MA, Cruanas R (2007) Effects of the agronomic use of olive oil mill wastewater: field experiment. Sci Total Environ 378:90–94. doi:10.1016/j.scitotenv.2007.01.009

    Article  CAS  PubMed  Google Scholar 

  • Siles J, Cajthaml T, Hernández P, Pérez-Mendoza D, García-Romera I, Sampedro I (2014) Shifts in soil chemical properties and bacterial communities responding to biotransformed dry olive residue used as organic amendment. Microb Ecol 70:231–243. doi:10.1007/s00248-014-0552-9

    Article  PubMed  Google Scholar 

  • Sindhu M, Cornfield A (1967) Effect of sodium chloride and moisture content on ammonification and nitrification in incubated soil. J Sci Food Agr 18:505–506

    Article  CAS  Google Scholar 

  • Singer A (2007) The soils of Israel. Springer, Berlin

    Google Scholar 

  • Sparling GP (1997) Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In: Pankhurst C, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International Publishing, Adelaide, pp 97–117

  • Steinmetz Z, Kurtz MP, Dag A, Zipori I, Schaumann GE (2015) The seasonal influence of olive mill wastewater applications on an orchard soil under semi-arid conditions. J Plant Nutr Soil Sci 178:641–648. doi:10.1002/jpln.201400658

    Article  CAS  Google Scholar 

  • Tamimi N, Diehl D, Njoum M, Marei Sawalha A, Schaumann GE (2016) Effects of olive mill wastewater disposal on soil: interaction mechanisms during different seasons. J Hydrol Hydromech 64:176–195. doi:10.1515/johh-2016-0017

    Article  CAS  Google Scholar 

  • Todoruk TR, Litvina M, Kantzas A, Langford CH (2003) Low-field NMR relaxometry: a study of interactions of water with water-repellant soils. Environ Sci Technol 37:2878–2882

    Article  CAS  PubMed  Google Scholar 

  • Tsiknia M, Tzanakakis VA, Oikonomidis D, Paranychianakis NV, Nikolaidis NP (2014) Effects of olive mill wastewater on soil carbon and nitrogen cycling. Appl Microbiol Biotechnol 98:2739–2749. doi:10.1007/s00253-013-5272-4

    Article  CAS  PubMed  Google Scholar 

  • Unestam T (1991) Water repellency, mat formation, and leaf-stimulated growth of some ectomycorrhizal fungi. Mycorrhiza 1:13–20

    Article  Google Scholar 

  • Wedler W, Boguslawski EV (1965) Zur Methodik der pF-Wert-Bestimmung mit der Zentrifuge Zeitschrift für Pflanzenernährung. Düngung, Bodenkunde 109:249–260

    Article  CAS  Google Scholar 

  • Weller P, Boner M, Foerstel H, Becker H, Peikert B, Dreher W (2011) Isotopic fingerprinting for the authenticity control of crop protection active compounds using the representative insecticide Fipronil. J Agr Food Chem 59:4365–4370

    Article  CAS  Google Scholar 

  • Wilhelmy L (1863) Ueber die Abhängigkeit der Capillaritäts - Constante des Alkohols von Substanz und Gestalt des benetzten festen Körpers. Annalen der Physik und Chemie 119:177

    Article  Google Scholar 

Download references

Acknowledgments

This research was conducted within the trilateral project “OLIVEOIL” funded by the DFG (SCHA849/13). We would like to thank Dr. Alexander von Wilamovitz-Moellendorff for his encouraged support and Dr. Jawad Hasan Shoqueir for his help with sampling. Special thanks to Eugenia Podolskaja, Felix Thelen, and Andreas Hirsch for their help in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Schaumann.

Appendix

Appendix

Table 3 Average values including standard deviation of the following parameters before (day 0) and after incubation of the OMW-treated soil under wet-cold (wk), moist-warm (mw), wet-hot (wh), and dry-hot (dh) conditions: pH, electrical conductivity, potassium-, nitrite-, sulfate-, and chloride-ions concentration, as well as loss on ignition (LOI) and mass loss of in temperature region IV related to the mineral mass (TG4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peikert, B., Schaumann, G.E., Bibus, D. et al. Effects of olive oil mill wastewater on chemical, microbiological, and physical properties of soil incubated under four different climatic conditions. Biol Fertil Soils 53, 89–102 (2017). https://doi.org/10.1007/s00374-016-1157-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-016-1157-x

Keywords

Navigation