Skip to main content
Log in

Effect of rice panicle size on paddy field CH4 emissions

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Developing large rice (Oryza sativa L.) panicles has been widely regarded as an effective approach to increasing rice yield. However, it is unclear whether panicle size affects CH4 emissions from rice fields, especially during the reproductive stage. Here, we conducted two experiments (rice variety and mutant) to examine the effects of rice panicle size on CH4 emissions. The variety experiment under field conditions at two sites showed that rice yield was significantly and positively correlated with the spikelet number. Mean CH4 emissions during the reproductive stage were significantly and negatively correlated with spikelet number. The rice mutant experiment under pot and field conditions using a wild-type rice variety (WT) and its mutant (Mutant) demonstrated that CH4 emissions were significantly lower in the former with large panicles than in the later with small panicles, during the reproductive and grain filling stages (P < 0.01), whereas the rice yields showed an opposite. Root exudates and soil dissolved organic C concentration were significantly lower under the WT than under the Mutant. Soil CH4 production potential and mcrA gene copy number of the soil under Mutant were significantly higher than those of the soil under WT. There was no significant difference in soil CH4 oxidation potential and pmoA gene copy number between soils of these two rice varieties. Our results suggest that developing large panicles would benefit rice production for high yield with low CH4 emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. No. 12–03. ESA Working paper. FAO, Rome

  • Ando T, Yoshida S, Nishiyama I (1983) Nature of oxidizing power of rice roots. Plant Soil 72:57–71. doi:10.1007/BF02185094

    Article  CAS  Google Scholar 

  • Aulakh MS, Wassmann R, Bueno C, Rennenberg H (2001a) Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil. Plant Soil 230:77–86. doi:10.1023/A:1004817212321

    Article  CAS  Google Scholar 

  • Aulakh MS, Bodenbender J, Wassmann R, Rennenberg H (2001b) Methane transport capacity of rice plants. I. Influence of methane concentration and growth stage analyzed with an automated measuring system. Nutr Cycl Agroecosys 58:357–366. doi:10.1023/A:1009831712602

    Article  Google Scholar 

  • Cheng S, Cao L, Zhuang J, Chen S, Zhan X, Fan Y, Zhu D, Min S (2007) Super hybrid rice breeding in China: achievements and prospects. J Integr Plant Biol 49:805–810. doi:10.1111/j.1744-7909.2007.00514.x

    Article  CAS  Google Scholar 

  • Conrad R (2007) Microbial ecology of methanogens and methanotrophs. In: Sparks DL (ed) Advances in agronomy, vol 96. Elsevier, San Francisco, pp 1–63. doi:10.1016/S0065-2113(07)96005-8

    Google Scholar 

  • Das K, Baruah KK (2008) A comparison of growth and photosynthetic characteristics of two improved rice cultivars on methane emission from rainfed agroecosystem of northeast India. Agric Ecosyst Environ 124:105–113. doi:10.1016/j.agee.2007.09.007

    Article  CAS  Google Scholar 

  • de Bossoreille de Ribou S, Douam F, Hamant O, Frohlich MW, Negrutiu I (2013) Plant science and agricultural productivity: why are we hitting the yield ceiling? Plant Sci 210:159–176. doi:10.1016/j.plantsci.2013.05.010

    Article  Google Scholar 

  • Denier van der Gon HAC, Kropff MJ, van Breemen N, Wassmann R, Lantin RS, Aduna E, Corton TM, Laar HH (2002) Optimizing grain yields reduces CH4 emissions from rice paddy fields. P Natl Acad Sci USA 99:12021–12024. doi:10.1073/pnas.192276599

    Article  CAS  Google Scholar 

  • Dubey SK, Singh A, Watanabe T, Asakawa S, Singla A, Arai H, Inubushi K (2014) Methane production potential and methanogenic archaeal community structure in tropical irrigated Indian paddy soils. Biol Fert Soils 50:369–379. doi:10.1007/s00374-013-0858-7

    Article  CAS  Google Scholar 

  • Fu J, Yang JC (2012) Research advances in high-yielding cultivation and physiology of super rice. Rice Sci 19:177–184. doi:10.1016/S1672-6308(12)60038-9

    Article  Google Scholar 

  • Gogoi N, Baruah KK, Gogoi B, Gupta PK (2005) Methane emission characteristics and its relations with plant and soil parameters under irrigated rice ecosystem of northeast India. Chemosphere 59:1677–1684. doi:10.1016/j.chemosphere.2004.11.047

    Article  CAS  PubMed  Google Scholar 

  • Gogoi N, Baruah KK, Gupta PK (2008) Selection of rice genotypes for lower methane emission. Agron Sustain Dev 28:181–186. doi:10.1051/agro:2008005

    Article  CAS  Google Scholar 

  • Gutierrez J, Atulba SL, Kim G, Kim PJ (2014) Importance of rice root oxidation potential as a regulator of CH4 production under waterlogged conditions. Biol Fert Soils 50:861–868. doi:10.1007/s00374-014-0904-0

    Article  CAS  Google Scholar 

  • Holmes AJ, Costello A, Lidstrom ME, Murrell JC (1995) Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208. doi:10.1111/j.1574-6968.1995.tb07834.x

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp-last page

  • Johnson Beebout SE, Angeles OR, Alberto MCR, Buresh RJ (2009) Simultaneous minimization of nitrous oxide and methane emission from rice paddy soils is improbable due to redox potential changes with depth in a greenhouse experiment without plants. Geoderma 149:45–53. doi:10.1016/j.geoderma.2008.11.012

    Article  CAS  Google Scholar 

  • Katsura K, Maeda S, Horie T, Shiraiwa T (2007) Analysis of yield attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice recently bred in China. Field Crop Res 103:170–177. doi:10.1016/j.fcr.2007.06.001

    Article  Google Scholar 

  • Kimura M, Murase J, Lu Y (2004) Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biol Biochem 36:1399–1416. doi:10.1016/j.soilbio.2004.03.006

    Article  CAS  Google Scholar 

  • Krüger M, Frenzel P, Conrad R (2001) Microbial processes influencing methane emission from rice fields. Global Change Biol 7:49–63. doi:10.1046/j.1365-2486.2001.00395.x

    Article  Google Scholar 

  • Krüger M, Eller G, Conrad R, Frenzel P (2002) Seasonal variation in pathways of CH4 production and in CH4 oxidation in rice fields determined by stable carbon isotopes and specific inhibitors. Global Change Biol 8:265–280. doi:10.1046/j.1365-2486.2002.00476.x

    Article  Google Scholar 

  • Kudo Y, Noborio K, Shimoozono N, Kurihara R (2014) The effective water management practice for mitigating greenhouse gas emissions and maintaining rice yield in central Japan. Agric Ecosyst Environ 186:77–85. doi:10.1016/j.agee.2014.01.015

    Article  CAS  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50. doi:10.1016/S1164-5563(01)01067-6

    Article  Google Scholar 

  • Li Y, Wang X (2013) Root-induced changes in radial oxygen loss, rhizosphere oxygen profile, and nitrification of two rice cultivars in Chinese red soil regions. Plant Soil 365:115–126. doi:10.1007/s11104-012-1378-1

    Article  CAS  Google Scholar 

  • Liu DY, Ding WX, Jia ZJ, Cai ZC (2011) Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China. Biogeosciences 8:329–338. doi:10.5194/bg-8-329-2011

    Article  CAS  Google Scholar 

  • Lou Y, Inubushi K, Mizuno T, Hasegawa T, Lin Y, Sakai H, Cheng W, Kobayashi K (2008) CH4 emission with differences in atmospheric CO2 enrichment and rice cultivars in a Japanese paddy soil. Global Change Biol 14:2678–2687. doi:10.1111/j.1365-2486.2008.01665.x

    Google Scholar 

  • Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen population in landfill. Microbiology 148:3521–3530. doi:10.1099/00221287-148-11-3521

    Article  CAS  PubMed  Google Scholar 

  • Ma K, Qiu Q, Lu Y (2010) Microbial mechanism for rice variety control on methane emission from rice field soil. Global Change Biol 16:3085–3095. doi:10.1111/j.1365-2486.2009.02145.x

    Article  Google Scholar 

  • Ma Y, Wang J, Zhou W, Yan X, Xiong Z (2012) Greenhouse gas emissions during the seedling stage of rice agriculture as affected by cultivar type and crop density. Biol Fert Soils 48:589–595. doi:10.1007/s00374-011-0656-z

    Article  CAS  Google Scholar 

  • Pan J, Cui K, Wei D, Huang J, Xiang J, Nie L (2011) Relationships of non‐structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels. Physiol Plantarum 141:321–331. doi:10.1111/j.1399-3054.2010.01441.x

    Article  CAS  Google Scholar 

  • Ramasamy S, Ten Berge HFM, Purushothaman S (1997) Yield formation in rice in response to drainage and nitrogen application. Field Crop Res 51:65–82. doi:10.1016/S0378-4290(96)01039-8

    Article  Google Scholar 

  • Rejesus RM, Palis FG, Rodriguez DGP, Lampayan RM, Bouman BA (2011) Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: evidence from rice producers in the Philippines. Food Policy 36:280–288. doi:10.1016/j.foodpol.2010.11.026

    Article  Google Scholar 

  • Sass RL, Cicerone RJ (2002) Photosynthate allocations in rice plants: food production or atmospheric methane? P Natl Acad Sci USA 99:11993–11995. doi:10.1073/pnas.202483599

    Article  CAS  Google Scholar 

  • Su J, Hu C, Yan X, Jin Y, Chen Z, Guan Q, Wang Y, Zhong D, Jansson C, Wang F, Schnürer A, Sun C (2015) Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature 523:602–606. doi:10.1038/nature14673

    Article  CAS  PubMed  Google Scholar 

  • Takai T, Matsuura S, Nishio T, Ohsumi A, Shiraiwa T, Horie T (2006) Rice yield potential is closely related to crop growth rate during late reproductive period. Field Crop Res 96:328–335. doi:10.1016/j.fcr.2005.08.001

    Article  Google Scholar 

  • Tokida T, Adachi M, Cheng WG, Nakajima Y, Fumoto T, Matsushima M, Nakamura H, Okada M, Sameshima R, Hasegawa T (2011) Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature. Global Change Biol 17:3327–3337. doi:10.1111/j.1365-2486.2011.02475.x

    Article  Google Scholar 

  • Wang J, Zhang X, Xiong Z, Khalil MAK, Zhao X, Xie Y, Xing G (2012) Methane emissions from a rice agroecosystem in South China: effects of water regime, straw incorporation and nitrogen fertilizer. Nutr Cycl Agroecosyst 93:103–112. doi:10.1007/s10705-012-9503-3

    Article  CAS  Google Scholar 

  • Watanabe A, Takeda T, Kimura M (1999) Evaluation of origins of CH4 carbon emitted from rice paddies. J Geophys Res 104:23623–23629. doi:10.1029/1999JD900467

    Article  CAS  Google Scholar 

  • Xu Y, Ge J, Tian S, Li S, Nguy-Robertson AL, Zhan M, Cao C (2015) Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Sci Total Environ 505:1043–1052. doi:10.1016/j.scitotenv.2014.10.073

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang J (2010) Grain-filling problem in ‘super’ rice. J Exp Bot 61:1–5. doi:10.1093/jxb/erp348

    Article  CAS  PubMed  Google Scholar 

  • Yuan Q, Pump J, Conrad R (2012) Partitioning of CH4 and CO2 production originating from rice straw, soil and root organic carbon in rice microcosms. PLoS One 7:e49073. doi:10.1371/journal.pone.0049073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Xue Y, Wang Z, Yang J, Zhang J (2009) Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crop Res 113:31–40. doi:10.1016/j.fcr.2009.04.004

    Article  CAS  Google Scholar 

  • Zhang G, Ji Y, Ma J, Xu H, Cai Z, Yagi K (2012) Intermittent irrigation changes production, oxidation, and emission of CH4 in paddy fields determined with stable carbon isotope technique. Soil Biol Biochem 52:108–116. doi:10.1016/j.soilbio.2012.04.017

    Article  CAS  Google Scholar 

  • Zou J, Huang Y, Jiang J, Zheng X, Sass RL (2005) A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application. Global Biogeochem Cy 19:GB2021. doi:10.1029/2004GB002401

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Technology Support Program of China (2011BAD16B14; 2015BAC02B02), Special Fund for Agro-scientific Research in the Public Interest (201503122), the Innovation Program of CAAS, the grant of China Scholarship Council (CSC), and Youth Science and Technology Innovation Foundation of Nanjing Agricultural University (Grant No. KJ2012002)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijian Zhang.

Additional information

Yu Jiang and Yunlu Tian contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Tian, Y., Sun, Y. et al. Effect of rice panicle size on paddy field CH4 emissions. Biol Fertil Soils 52, 389–399 (2016). https://doi.org/10.1007/s00374-015-1084-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1084-2

Keywords

Navigation