Skip to main content
Log in

Fluorescence resonance energy transfer (FRET)-based technique for tracking of endophytic bacteria in rice roots

  • Short Communication
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Visualization of endophytes inside the host tissue has remained a prime interest to the plant microbiologist throughout the last decade. Assessment of a root colonization pattern of a nitrogen-fixing polyvalent plant-growth-promoting endophyte, Azotobacter chroococcum Avi2 (16S rRNA gene NCBI acc. no. KP099933), of Oryza sativa var. Swarna, by a plasmid containing green fluorescent protein (GFP) gene failed because the bacteria formed a cyst on exposure to CaCl2 during the transformation process of the green fluorescent protein gene. A new technique based on fluorescence resonance energy transfer (FRET) was developed to visualize the intracellular location of the bacterium of rice root as an alternative to track the bacterium where the use of GFP is restricted. An Al3+-specific rhodamine-based novel fluorescent ligand (λ ex = 400 nm, λ em = 455 nm), (E)-3′,6′-bis(diethylamino)-2-(2-(pyren-4-ylmethyleneamino)ethyl)spiro[isoindoline-1,9′xanthen]-3-one, was synthesized and used to visualize 100 μM aluminium nitrate treated A. chroococcum inside rice root tissues. Within 6 h of incubation, a clear, stable and distinguishable green fluorescence was observed under the fluorescence microscope form Al3+-treated A. chroococcum colonized in the rice roots when incubated with a ligand. The results confirmed colonization of the bacteria inside the roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Anand R, Chanway CP (2013) Detection of GFP-labeled Paenibacillus polymyxa in autofluorescing pine seedling tissues. Biol Fertil Soils 49:111–118. doi:10.1007/s00374-012-0727-9

    Article  CAS  Google Scholar 

  • Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194:15–24. doi:10.1023/A:1004246904803

    Article  CAS  Google Scholar 

  • Chi F, Yang P, Han F, Jing Y, Shen S (2010) Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics 10:1861–1874. doi:10.1002/pmic.200900694

    Article  CAS  PubMed  Google Scholar 

  • Crameri A, Whitehorn EA, Tate E, Stemmer WP (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319. doi:10.1038/nbt0396-315

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Wang J, Liu Y, Chen S (2005) Isolation and identification of nitrogen‐fixing bacilli from plant rhizospheres in Beijing region. J Appl Microbiol 99:1271–1281. doi:10.1111/j.1365-2672.2005.02738.x

    Article  CAS  PubMed  Google Scholar 

  • Ding T, Palmer MW, Melcher U (2013) Community terminal restriction fragment length polymorphisms reveal insights into the diversity and dynamics of leaf endophytic bacteria. BMC Microbiol 13:1. doi:10.1186/1471-2180-13-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Durán P, Acuña JJ, Jorquera MA, Azcón R, Paredes C, Rengel Z, de la Luz MM (2014) Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol Fertil Soils 50:983–990. doi:10.1007/s00374-014-0920-0

    Article  Google Scholar 

  • Hiraishi A (1992) Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213. doi:10.1111/j.1472-765X.1992.tb00765.x

    Article  CAS  PubMed  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Integration of biotechnologies plant and endophyte relationships: nutrient management. In: Murray Moo-Young (Ed.). Compr Biotechnol 4: 713–27. doi: 10.1016/B978-0-08-088504-9.00264-6

  • Kizilkaya R (2008) Yield response and nitrogen concentrations of spring wheat (Triticum aestivum) inoculated with Azotobacter chroococcum strains. Ecol Eng 33:150–156. doi:10.1016/j.ecoleng.2008.02.011

    Article  Google Scholar 

  • Lohar S, Sahana A, Banerjee A, Banik A, Mukhopadhyay SK, Sanmartín Matalobos J, Das D (2013) Antipyrine based arsenate selective fluorescent ligand for living cell imaging. Anal Chem 85:1778–1783. doi:10.1021/ac3031338

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra AK, Roy J, Manna SK, Kundu S, Sahoo P, Mukhopadhyay SK, Banik A (2012) Hg 2+−selective “turn-on” fluorescent chemodosimeter derived from glycine and living cell imaging. J Photochem Photobiol a 240:26–32. doi:10.1016/j.jphotochem.2012.05.001

    Article  CAS  Google Scholar 

  • Mahapatra AK, Manna SK, Mukhopadhyay SK, Banik A (2013) First rhodamine-based “off–on” chemosensor with high selectivity and sensitivity for Zr4+ and its imaging in living cell. Sensor Actuat B-Chem 183:350–355. doi:10.1016/j.snb.2013.04.012

    Article  CAS  Google Scholar 

  • Mercado-Blanco J (2015) Life of microbes inside the plant. In principles of plant-microbe interactions. Springer International Publishing, Berlin pp 25–32. doi: 10.1007/978-3-319-08575-3_5

  • Reinhold-Hurek B, Hurek T (1998) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Crc Cr Rev Plant Sci 17:29–54. doi:10.1080/07352689891304186

    Article  Google Scholar 

  • Sahana A, Banerjee A, Lohar S, Banik A, Mukhopadhyay SK, Safin D, Babashkina MG, Bolte M, Garcia Y, Das D (2013) FRET based tri-color emissive rhodamine-pyrene conjugate as an Al 3+ selective colorimetric and fluorescence sensor for living cell imaging. J Chem Soc Dalton Trans 42:13311–13314. doi:10.1039/C3DT51752G

    Article  CAS  Google Scholar 

  • Sekar RB, Periasamy A (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160:629–633. doi:10.1083/jcb.200210140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shahravan SH, Li IT, Truong K, Shin JA (2011) FRep: a fluorescent protein-based bioprobe for in vivo detection of protein–dna interactions. Anal Chem 83:9643–9650. doi:10.1021/ac2024602

    Article  CAS  PubMed  Google Scholar 

  • Smit G, Logman TJ, Boerrigter ME, Kijne JW, Lugtenberg BJ (1989) Purification and partial characterization of the Rhizobium leguminosarum biovar viciae Ca2+ -dependent adhesin, which mediates the first step in attachment of cells of the family Rhizobiaceae to plant root hair tips. J Bacteriol 171:4054–4062

    PubMed Central  CAS  PubMed  Google Scholar 

  • Timonen S (1995) Avoiding autofluorescence problems: time-resolved fluorescence microscopy with plant and fungal cells in ectomycorrhiza. Mycorrhiza 5:455–458. doi:10.1007/s005720050097

    Article  Google Scholar 

  • Wang X, Zhang X, Liu L, Xiang M, Wang W, Sun X, Che Y, Guo L, Liu G, Guo L, Wang C, Yin WB, Stadler M, Zhang X, Liu X (2015) Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products. BMC Genomics 16:28. doi:10.1186/s12864-014-1190-9

    Article  PubMed Central  PubMed  Google Scholar 

  • Wei CY, Lin L, Luo LJ, Xing YX, Hu CJ, Yang LT, Yang-Rui L, An Q (2014) Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth. Biol Fert Soils 50:657–666. doi:10.1007/s00374-013-0878-3

    Article  CAS  Google Scholar 

  • Wu JS, Hwang IC, Kim KS, Kim JS (2007) Rhodamine-based Hg2+ selective chemodosimeter in aqueous solution: fluorescent OFF-ON. Org Lett 9:907–910. doi:10.1021/ol070109c

    Article  PubMed  Google Scholar 

  • Yong WTL, Abdullah JO, Mahmood M (2006) Optimization of Agrobacterium -mediated transformation parameters for Melastomataceae spp. using green fluorescent protein (GFP) as a reporter. Sci Horticult 109:78–85. doi:10.1016/j.scienta.2006.03.005

    Article  CAS  Google Scholar 

  • Zachow C, Fatehi J, Cardinale M, Tilcher R, Berg G (2010) Strain-specific colonization pattern of Rhizoctonia antagonists in the root system of sugar beet. FEMS Microbiol Ecol 74:124–135. doi:10.1111/j.1574-6941.2010.00930.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financially supported by Indian Council of Agricultural Research (ICAR) project “Application of microorganisms in agriculture and allied sector” (AMAAS) is acknowledged. The University Science Instrumentation Centre (USIC), University of Burdwan, West Bengal, India, for fluorescence microscopy facility is thankfully acknowledged.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Kanti Dangar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banik, A., Mukhopadhaya, S.K., Sahana, A. et al. Fluorescence resonance energy transfer (FRET)-based technique for tracking of endophytic bacteria in rice roots. Biol Fertil Soils 52, 277–282 (2016). https://doi.org/10.1007/s00374-015-1064-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1064-6

Keywords

Navigation