Skip to main content

Advertisement

Log in

Bio-organic fertilizer application significantly reduces the Fusarium oxysporum population and alters the composition of fungi communities of watermelon Fusarium wilt rhizosphere soil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Watermelon Fusarium wilt is one of the most severe soil-borne diseases caused by Fusarium oxysporum f. sp. niveum. In this study, the population of F. oxysporum was quickly monitored by real-time PCR and DNA array in watermelon Fusarium wilt infected soils treated with Paenibacillus polymyxa SQR21 enhanced bio-organic fertilizer (BIO) at the beginning of nursery growth and/or at the beginning of transplanting. The fungal community composition was investigated by molecular cloning and DGGE techniques. The real-time PCR results showed the F. oxysporum population in the rhizosphere soil decreased from 8.56 × 104 colony-forming units (cfu) g−1 rhizosphere soil to 9.41 × 103 cfu g−1 rhizosphere soil after BIO application and the DNA array detection signals of F. oxysporum population weakened. The difference between F. oxysporum abundance of BIO amended and not amended bulk soils was lower than 104 cfu g−1 soil. DGGE profile indicated that BIO application changed the fungal community structure in the rhizosphere soils; the molecular cloning data revealed that consecutive applications of BIO at nursery and transplanting stages not only decreased Ascomycota and increased Basidiomycota abundance in the rhizosphere soil but also caused the apperance of unique fungal group which were not found in the control. The beneficial fungi Chaetomium sp. Aspergillus penicillioides were found in the BIO amended treatment, while some harmful fungi such as F. oxysporum, Rhizoctonia solani, and Fusarium solani were only detected in the control. Data from this study indicated that BIO application can control watermelon Fusarium wilt by suppressing the population of F. oxysporum and changing the fungal community structure in the rhizosphere soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alabouvette C, Olivain C, Steinberg C (2006) Biological control of plant diseases: the European situation. Eur J Plant Pathol 114:329–341

    Article  Google Scholar 

  • Anderson IC, Campbell CD, Prosser JI (2003) Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ Microbiol 5:36–47

    Article  CAS  PubMed  Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Booth C (1971) The genus Fusarium. Eastern Press, London, pp 147–149

    Google Scholar 

  • Borrero C, Trillas MI, Ordovás J, Tello J, Avilés M (2004) Predictive factors for the suppression of Fusarium wilt of tomato in plant growth media. Am Phytopathol Soc 94:1094–1101

    Article  Google Scholar 

  • Bridge P, Spooner B (2001) Soil fungi: diversity and detection. Plant Soil 232:147–154

    Article  CAS  Google Scholar 

  • Burdon JJ, Silk J (1997) Sources and patterns of diversity in plant pathogenic fungi. Phytopathology 87:664–669

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Ling N, Yang XM, Chen LH, Shen QR (2011) Bacillus subtilis SQR9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils 47:495–506

    Article  CAS  Google Scholar 

  • Chen LH, Huang XQ, Zhang FG, Zhao DK, Yang XM, Shen QR (2012) Applications of Trichoderma harzianum SQR-T037 bioorganic fertilizer significantly affect the microbial communities of continuously cropped soil of cucumber. J Sci Food Agric 92:2465–2470

    Article  CAS  PubMed  Google Scholar 

  • Dijksterhuis J, Sanders M, Gorris LGM, Smid EJ (1999) Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J Appl Microbiol 86:13–21

    Article  CAS  PubMed  Google Scholar 

  • Ding CY, Shen QR, Zhang RF, Chen W (2013) Evaluation of rhizosphere bacteria and derived bio-organic fertilizers as potential biocontrol agents against bacterial wilt (Ralstonia solanacearum) of potato. Plant Soil 366:453–466

    Article  CAS  Google Scholar 

  • Fang SZ, Liu D, Tian Y, Deng SP, Shang XL (2013) Tree species composition influences enzyme activities and microbial biomass in the rhizosphere: a rhizobox approach. PloS ONE 8:e61461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes, application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gilbert CA, Zhang N, Hutmacher RB, Davis RM, Smart CD (2008) Development of a DNA-based macroarray for the detection and identification of Fusarium oxysporum f. sp. vasinfectum in cotton tissue. J Cotton Sci 12:165–170

    CAS  Google Scholar 

  • Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soil. Appl Environ Microbiol 69:1800–1809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman GH, Hayes C, Harman GE (1994) Molecular and cellular biology of biocontrol Trichoderma spp. Trends Biotechnol 12:478–482

    Article  CAS  PubMed  Google Scholar 

  • Haggag WM, Timmusk S (2008) Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates bio-control against crown rot disease. J Appl Microbiol 104:961–969

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Zhang N, Ying XY, Yang XM, Shen QR (2012) Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiol Res 167:135–143

    Article  CAS  PubMed  Google Scholar 

  • Lang JJ, Hu J, Ran W, Xu YC, Shen Q (2012) Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer. Biol Fertil Soils 48:191–203

    Article  Google Scholar 

  • Lievens B, Thomma BPHJ (2005) Recent developments in pathogen detection arrays: implications for fungal plant pathogens and use in practice. Phytopathology 95:1374–1380

    Article  CAS  PubMed  Google Scholar 

  • Lievens B, Brouwer M, Vanachter ACRC, Lévesque CA, Cammue BPA, Thomma BPHJ (2003) Design and development of a DNA array for rapid detection and identification of multiple tomato vascular wilt pathogens. FEMS Microbiol 223:113–122

    Article  CAS  Google Scholar 

  • Ling N, Xue C, Huang QW, Yang XM, Xu YC, Shen QR (2010) Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. Biocontrol 55:673–683

    Article  Google Scholar 

  • Ling N, Zhang WW, Tan SY, Huang QW, Shen QR (2012) Effect of the nursery application of bioorganic fertilizer on spatial distribution of Fusarium oxysporum f. sp niveum and its antagonistic bacterium in the rhizosphere of watermelon. Appl Soil Ecol 59:13–19

    Article  Google Scholar 

  • Liu YX, Shi JX, Feng YG, Yang XM, Li X, Shen QR (2013) Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biol Fertil Soils 49:447–464

    Article  Google Scholar 

  • Luo J, Ran W, Hu J, Yang XM, Xu YC, Shen QR (2010) Application of bio-organic fertilizer significantly affected fungal diversity of soils. Soil Sci Soc Am J 74:2039–2048

    Article  CAS  Google Scholar 

  • Marschner P, Crowley DE, Lieberei R (2001) Arbuscular mycorrhizal infection changes the bacterial 16S rDNA community composition in the rhizosphere of maize. Mycorrhiza 11:297–302

    Article  CAS  PubMed  Google Scholar 

  • Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28

    Article  PubMed Central  PubMed  Google Scholar 

  • Minuto A, Davide S, Garibaldi A, Gullino ML (2006) Control of soil-borne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Prot 25:468–475

    Article  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Njambere EN, Clarke BB, Zhang N (2011) Dimeric oligonucleotide probes enhance diagnostic macroarray performance. J Microbiol Meth 86:52–61

    Article  CAS  Google Scholar 

  • Omar I, O’Neill T, Rossall S (2006) Biological control of Fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbenda-zim. Plant Pathol 55:92–99

    Article  CAS  Google Scholar 

  • Pitt JI, Hocking AD (2009) Fungi and food spoilage. In: Pitt JI, Hocking AD (eds) Aspergillus and related teleomorphs, 3rd edn. Springer, New York, pp 275–295

    Google Scholar 

  • Prieto LH, Bertiller MB, Carrera AL, Olivera NL (2011) Soil enzyme and microbial activities in a grazing ecosystem of Patagonian Monte, Argentina. Geoderma 162:281–287

    Article  CAS  Google Scholar 

  • Qiu MH, Zhang RF, Xue C, Zhang SS, Li SQ, Zhang N, Shen QR (2012) Application of a novel bioorganic fertilizer can control Fusarium wilt by regulating microbial community of cucumber rhizosphere soils. Biol Fertil Soils 48:807–816

    Article  CAS  Google Scholar 

  • Raza W, Yang W, Shen QR (2008) Paenibacillus polymyxa: antibiotics, hydrolytic enzymes and hazard assessment. J Plant Pathol 90:419–430

    CAS  Google Scholar 

  • Ryu CM, Kim J, Choi O, Kim SH, Park CS (2006) Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control 39:282–289

    Article  Google Scholar 

  • Shen ZZ, Zhong ST, Wang YG, Mei XL, Wang BB, Li R, Ruan YZ, Shen QR (2013) Induced soil microbial suppression of banana Fusarium wilt disease using compost and bio fertilizers to improve yield and quality. Eur J Soil Biol 57:1–8

    Article  Google Scholar 

  • Suyanto OT, Yazaki S, Mimura Ui AS (2003) Isolation of a novel thermophilic fungus Chaetomium sp. nov. MS-017 and description of its palm-oil mill fiber-decomposing properties. Appl Microbiol Biotechnol 60:581–587

    Article  CAS  PubMed  Google Scholar 

  • Tamura M, Kawasaki H, Sugiyama J (1999) Identity of the xerophilic species Aspergillus penicillioides: integrated analysis of the genotypic and phenotypic. J Gen Appl Microbiol 45:29–37

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner HGE (2005) Paenibacillus polymyxa invades plant roots and forms biofilm. Appl Environ Microbiol 71:7292–7300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tjamos EC, Tsitsiyannis DI, Tjamos SE, Antoniou PP, Katinakis P (2004) Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of solanaceous hosts. Eur J Plant Pathol 110:35–44

    Article  CAS  Google Scholar 

  • Trillas MI, Casanova E, Corxarrera L, Ordovas J, Borrero C, Aviles M (2006) Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol Control 39:32–38

    Article  Google Scholar 

  • Van Bruggen AHC, Semenov AM (1999) A new approach to the search for indicators of root disease suppression. Aust J Plant Pathol 28:4–10

    Article  Google Scholar 

  • Visser S, Parkinson D (1992) Soil biological criteria as indicators of soil quality: soil micro-organisms. Am. J. Alternative Agric 7:33–37

    Article  Google Scholar 

  • Wang BB, Yuan J, Zhang J, Shen ZZ, Zhang MX, Li R, Ruan YZ, Shen QR (2013) Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biol Fertil Soils 49:435–446

    Article  Google Scholar 

  • Wei Z, Yang XM, Yin SX, Shen QR, Ran W, Xu YC (2011) Efficacy of Bacillus-fortified organic fertilizer in controlling bacterial wilt of tomato in the field. Appl Soil Ecol 48:152–159

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Wu HS, Yang XM, Fan JQ, Miao WG, Ling N, Shen QR (2008) Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. Bio Control 54:287–300

    Google Scholar 

  • Yang R, Tang J, Chen X, Hu S (2007) Effects of coexisting plant species on soil microbes and soil enzymes in metal lead contaminated soils. Appl Soil Ecol 37:240–246

    Article  Google Scholar 

  • Yang XM, Chen LH, Yong XY, Shen QR (2011) Formulations can affect colonization and biocontrol efficiency of Trichoderma harzianum SQR-T037 against Fusarium wilt of cucumbers. Biol Fertil Soils 47:239–248

    Article  Google Scholar 

  • Yin SX, Dong YH, Xu YC, Huang QW, Shen QR (2011) Upland rice seedling wilt and microbial biomass and enzyme activities of compost-treated soils. Biol Fertil Soils 47:303–313

    Article  Google Scholar 

  • Zhang N, Geiser DM, Smart CD (2007) Macroarray detection of solanaceous plant pathogens in the Fusarium solani species complex. Plant Dis 91:1612–1620

    Article  CAS  Google Scholar 

  • Zhang S, Raza W, Yang XM, Hu J, Huang QW, Xu YC, Liu X, Ran W, Shen QR (2008) Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fertil Soils 4:1073–1080

    Article  Google Scholar 

  • Zhang N, Wu K, He X, Li SQ, Zhang ZH, Shen B, Yang XM, Zhang RF, Huang QW, Shen QR (2011) A new bioorganic fertilizer can effectively control banana wilt by strong colonization of Bacillus subtilis N11. Plant Soil 344:87–97

    Article  CAS  Google Scholar 

  • Zhao Q, Dong C, Yang X, Mei X, Ran W, Shen Q, Xu Y (2010) Biocontrol of Fusarium wilt disease for Cucumismelo melon using bio-organic fertilizer. Appl Soil Ecol 47:67–75

    Article  CAS  Google Scholar 

  • Zhao S, Clarke BB, Shen Q, Zhang L, Zhang N (2012) Development and application of a TaqMan real-time PCR assay for rapid detection of Magnaporthe poae. Mycologia 104:1250–1259

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to extend their appreciation to Dr. Luo Jia for his assistance in the laboratory analyses. This work was financially co-sponsered by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), by the National Natural Science Foundation of China for Youth (31301809), by the 111 project (B12009), and by the Chinese Ministry of Agriculture (201103004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qirong Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, S., Liu, D., Ling, N. et al. Bio-organic fertilizer application significantly reduces the Fusarium oxysporum population and alters the composition of fungi communities of watermelon Fusarium wilt rhizosphere soil. Biol Fertil Soils 50, 765–774 (2014). https://doi.org/10.1007/s00374-014-0898-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-014-0898-7

Keywords

Navigation