Skip to main content

Advertisement

Log in

Location and stability of a recombinant ovine prion protein in synthetic humic-like mineral complexes

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Location and stability of a recombinant prion protein (recPrP) and its interaction with humic-like complexes were investigated by low-temperature ashing (LTA), thermal gravimetric (TG), and scanning electron microscopy (SEM) analyses. Humic-like complexes were obtained by abiotic polymerization of catechol, one of the possible precursors of soil humic matter, through the catalysis of birnessite, a manganese oxide common in soil environment. The recPrP was immobilized in organomineral complexes via sorption or entrapment. Complexes were treated by LTA, allowing the controlled removal of organic matter layer by layer, from the external to the internal side, with minimal disturbance of mineral constituents. Thermal gravimetric and SEM analyses were performed on specimens before and after LTA treatment. Entrapped recPrP, compared with sorbed, resulted less easily accessible to LTA treatment and showed a higher thermal stability by TGA analyses. On the basis of these findings, we hypothesize that the processes leading to newly formed organic complexes can enhance prion stability in soil and thus influence the environmental diffusion of infectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baldock JA, Oades JM, Waters AG, Peng X, Vassallo A, Wilson MA (1992) Aspects of the chemical structure of soil organic materials as revealed by solid-state 13 C NMR spectroscopy. Biogeochemistry 16:1–42

    CAS  Google Scholar 

  • Brown P, Gajdusek DC (1991) Survival of scrapie virus after 3 years’ interment. Lancet 337:269–270

    Article  PubMed  CAS  Google Scholar 

  • Brown DR, Hafiz F, Glasssmith LL, Wong BS, Jones IM, Clive C, Haswell SJ (2000) Consequences of manganese replacement of copper for prion protein function and proteinase resistance. EMBO J 19:1180–1186

    Article  PubMed  CAS  Google Scholar 

  • Bünemann EK (2008) Enzyme additions as a tool to assess the potential bioavailability of organically bound nutrients. Soil Biol Biochem 40:2116–2129

    Article  Google Scholar 

  • Burns RG (1986) Interaction of enzymes with soil mineral and organic fraction. In: Huang M, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Special publication 17. Soil Science Society of America, Madison, pp 429–451

    Google Scholar 

  • D’Acqui LP, Churchman GJ, Janik LJ, Ristori GG, Weissmann DA (1999) Effect of organic matter removal by low-temperature ashing on dispersion of undisturbed aggregates from a tropical crusting soil. Geoderma 93:311–324

    Article  Google Scholar 

  • Davies P, Brown DR (2009) Manganese enhances prion protein survival in model soils and increases prion infectivity to cells. PLoS One 4:e7518

    Article  PubMed  Google Scholar 

  • Eghiaian F, Grosclaude J, Lesceu S, Debey P, Doublet B, Tréguer E, Rezaei H, Knossow M (2004) Insight into the PrPc–PrPsc conversion from the structures of antibody-bound ovine prion scrapie-susceptibility variants. PNAS 10:10254–10259

    Article  Google Scholar 

  • Francioso O, Ferrari E, Saladini M, Montecchio D, Gioacchini P, Ciavatta C (2007) TG–DTA, DRIFT and NMR characterisation of humic-like fractions from olive wastes and amended soil. J Hazard Mater 149:408–417

    Article  PubMed  CAS  Google Scholar 

  • Genovesi S, Leita L, Sequi P, Andrighetto I, Sorgato MC et al. (2007) Direct detection of soil-bound prions. PLoS One 2:e1069. doi:10.1371

    Article  PubMed  Google Scholar 

  • Georgsson G, Sigurdarson S, Brown P (2006) Infectious agent of sheep scrapie may persist in the environment for at least 16 years. J Gen Virol 87:3737–3740

    Article  PubMed  CAS  Google Scholar 

  • Graham SJ, McKintosh E, Flechsig E, Prodromidou K, Hirsch P, Linehan J, Brandner S, Clarke AR, Weissmann C, Collinge J (2005) An enzyme–detergent method for effective prion decontamination of surgical steel. J Gen Virol 86:869–878

    Article  Google Scholar 

  • Hinckley GT, Johnson CJ, Jacobson KH, Bartholomay C, McMahon KD, McKenzie D, Aiken JM, Pedersen JA (2008) Persistence of pathogenic prion protein during simulated wastewater treatment processes. Environ Sci Technol 42:5254–5259

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KH, Lee S, Sommerville RA, McKenzie D, Benson CH, Pedersen JA (2010) Transport of the pathogenic prion protein through soils. J Environ Qual 39:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Johnson CJ, Phillips KE, Schramm PT, McKenzie D, Aiken JM, Pedersen JA (2006) Prions adhere to soil minerals and remain infectious. PLoS Pathog 2:296–302

    Article  CAS  Google Scholar 

  • Johnson CJ, Pedersen JA, Chappell RJ, McKenzie D, Aiken JM (2007) Oral transmissibility of prion disease is enhanced by binding to soil particles. PLoS Pathog 3:874–881

    Article  CAS  Google Scholar 

  • Ma X, Benson CH, McKenzie D, Aiken JM, Pedersen JA (2007) Adsorption of pathogenic prion protein to quartz sand. Environ Sci Technol 41:2324–2330

    Article  PubMed  CAS  Google Scholar 

  • Marcoen JM, Delecour F (1976) Possibilities for using low temperature ashing in soil science. Pedologie 26:5–14

    Google Scholar 

  • Matocha CJ, Sparks DL, Amonette JE, Kukkadapu RK (2001) Kinetics and mechanism of birnessite reduction by catechol. Soil Sci Soc Am J 65:58–66

    Article  CAS  Google Scholar 

  • McKenzie RM (1989) Manganese oxides and hydroxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments, vol SSSA Book Ser. 1, 2nd edn. SSSA, Madison, pp 439–465

    Google Scholar 

  • Miller MW, Williams ES (2003) Prion disease: horizontal prion transmission in mule deer. Nature 425:35–36

    Article  PubMed  CAS  Google Scholar 

  • Nagaoka K, Yoshioka M, Shimozaki N, Yamamura T, Murayama Y, Yokoyama T, Mohri S (2010) Sensitive detection of scrapie prion protein in soil. Biochem Biophys Res Comm 397:626–630

    Article  PubMed  CAS  Google Scholar 

  • Naidja A, Huang PM, Bollag JM (1998) Comparison of the reaction products from the transformation of catechol catalysed by birnessite or tyrosinase. Soil Sci Soc Am J 62:188–195

    Article  CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Cervelli S, Matarese E (1980) Extraction of phosphatase, urease, proteases, organic carbon, and nitrogen from soil. Soil Sci Soc Am J 44:1011–1016

    Article  CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Bianchi D (1988) Characterization of soil humus phosphatase complexes extracted from soil. Soil Biol Biochem 20:683–691

    Article  CAS  Google Scholar 

  • Nannipieri P, Sequi P, Fusi P (1996) Humus and enzyme activity. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 293–328

    Chapter  Google Scholar 

  • Peuravuori J, Paaso N, Pihlaja K (1999) Kinetic study of the thermal degradation of lake aquatic humic matter by thermogravimetric analysis. Thermochim Acta 325:181–193

    Article  CAS  Google Scholar 

  • Polano M, Anselmi C, Leita L, Negro A, De Nobili M (2008) Organic polyanions act as complexants of prion protein in soil. Biochem Biophys Res Commun 367:323–329

    Article  PubMed  CAS  Google Scholar 

  • Provenzano MR, Senesi N (1999) Thermal properties of standard and reference humic substances by differential scanning calorimetry. J Anal Calorim 57:517–526

    Article  CAS  Google Scholar 

  • Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(368):136–144

    Article  PubMed  CAS  Google Scholar 

  • Pucci A, D’Acqui LP, Calamai L (2008) Fate of prions in soil: interactions of RecPrP with organic matter of soil aggregates as revealed by LTA-PAS. Environ Sci Technol 42:728–733

    Article  PubMed  CAS  Google Scholar 

  • Ragnarsdottir KV, Hawkins DP (2006) Bioavailable copper and manganese in soils from Iceland and their relationship with scrapie occurrence in sheep. J Geochem Explor 88:228–234

    Article  CAS  Google Scholar 

  • Rao MA, Russo F, Granata V, Berisio R, Zagari A, Gianfreda L (2007) Fate of prions in soil: interaction of a recombinant ovine prion protein with synthetic humic-like mineral complexes. Soil Biol Biochem 39:493–504

    Article  CAS  Google Scholar 

  • Revault M, Quiquampoix H, Baron MH, Noinville S (2005) Fate of prions in soil: trapped conformation of full-length ovine prion protein induced by adsorption on clays. Biochim Biophys Acta 1724:367–374

    Article  PubMed  CAS  Google Scholar 

  • Rezaei H, Marc D, Choiset Y, Takahashi M, Hoa GH, Haertle T, Grosclaude J, Debey P (2000) High yield purification and physico-chemical properties of full-length recombinant allelic variants of sheep prion protein linked to scrapie susceptibility. Eur J Biochem 267:2833–2839

    Article  PubMed  CAS  Google Scholar 

  • Rigou P, Rezaei H, Grosclaude J, Staunton S, Quiquampoix H (2006) Fate of prions in soil: Adsorption and extraction by electroelution of recombinant ovine prion protein from montmorillonite and natural soils. Environ Sci Technol 40:1497–1503

    Article  PubMed  CAS  Google Scholar 

  • Russo F, Johnson CJ, Johnson CJ, McKenzie D, Aiken JM, Pedersen JA (2009) Degradation of the pathogenic prion protein by a manganese mineral prevalent in soils. J Gen Virol 90:275–280

    Article  PubMed  CAS  Google Scholar 

  • Saunders SE, Bartz JC, Vercauteren KC, Bartelt-Hunt SL (2010) Enzymatic digestion of chronic wasting disease prions bound to soil. Environ Sci Technol 44:4129–4135

    Article  PubMed  CAS  Google Scholar 

  • Schramm PT, Johnson CJ, Mathews NE, McKenzie D, Aiken JM, Pedersen JA (2006) Potential role of soil in the transmission of prion disease. Rev Mineral Geochem 64:135–152

    Article  CAS  Google Scholar 

  • Seidel B, Thomzig A, Buschmann A, Groschup MH, Peters R, Beekes M, Terytze K (2007) Scrapie agent (strain 263K) can transmit disease via the oral route after persistence in soil over years. PLoS One 2:435–442

    Article  Google Scholar 

  • Sullivan LA, Koppi AJ (1987) In situ soil organic matter studies using scanning electron microscopy and low temperature ashing. Geoderma 40:317–332

    Article  CAS  Google Scholar 

  • Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9015

    Article  PubMed  CAS  Google Scholar 

  • Taylor DM (2000) Inactivation of transmissible degenerative encephalopathy agents: a review. Vet J 159:10–17

    Article  PubMed  CAS  Google Scholar 

  • Thomas RS, Hollahan JR (1974) Use of chemically-reactive gas plasmas in preparing specimens for scanning electron microscopy and electron probe microanalysis. In: Johari O, Corvin I (eds) Proceedings SEM/IITRI/1974, vol 1. IIT Research Institute, Chicago, pp 83–92

    Google Scholar 

  • Vasina EN, Déjardin P, Rezaei H, Grosclaude J, Quiquampoix H (2005) Fate of prions in soil: adsorption kinetics of recombinant unglycosylated ovine prion protein onto mica in laminar flow conditions and subsequent desorption. Biomacromolecules 6:3425–3432

    Article  PubMed  CAS  Google Scholar 

  • Villalobos M, Toner B, Bargar J, Sposito G (2003) Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim Cosmochim Acta 67:2649–2662

    Article  CAS  Google Scholar 

  • Watts JC, Balachandran A, Westaway D (2006) The expanding universe of prion diseases. PLoS Pathog 2:152–163

    Article  CAS  Google Scholar 

  • Zang X, van Heemst JDH, Dria KJ, Hatcher PG (2000) Encapsulation of protein in humic acid from a histosol as an explanation for the occurrence of organic nitrogen in soil and sediment. Org Geochem 31:679–695

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by EU within the TSE-SOIL-FATE project no. QLK4-CT-2002-02493. Technical assistance by Dr. Rosa Zullo, Dr. Iovino Rossella, and Dr. Jiří Kučerík for the help in TGA–DTG analyses and Mr. Alessandro Dodero for elemental analyses is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaranta Pucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pucci, A., Russo, F., Rao, M.A. et al. Location and stability of a recombinant ovine prion protein in synthetic humic-like mineral complexes. Biol Fertil Soils 48, 443–451 (2012). https://doi.org/10.1007/s00374-011-0639-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-011-0639-0

Keywords

Navigation