Skip to main content
Log in

Influence of long-term organic and mineral fertilization on soil nematofauna when growing Sorghum bicolor in Burkina Faso

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Soil degradation has led crop yield to decline in many Sahelian countries and is a fundamental agricultural and economical threat for local populations. In Saria, Burkina Faso, long-term experiments are being performed to find efficient soil management practices that could improve soil fertility. A randomized block experiment comprising organic amendment (unamended control, straw at 8.3 t ha−1, manure at 10 t ha−1) coupled with mineral fertilization (no urea, urea at 60 kg ha−1) was started in 1980 with a continuous sorghum (Sorghum bicolor) cropping system. Twenty-six years after the settlement of the treatments, we compared their effects on nematode populations, community structure, and ecological indices, as well as soil physical and chemical properties at three stages of sorghum’s cropping cycle.

The addition of manure led to significantly higher soil C, N, and P content and produced a higher sorghum grain yield in comparison to unamended or straw-amended soils. The number of plant-parasitic nematodes (mainly Pratylenchus and Tylenchorhynchus) was significantly higher in plots fertilized with manure in comparison to unamended or straw-amended plots. They were also significantly more abundant when urea was added. Mineral nitrogen fertilization had little impact on free-living nematodes, regardless of S. bicolor development stage, whereas organic amendment significantly raised the abundance of bacterivorous and fungivorous nematodes. Moreover, microphagous nematodes were significantly more numerous in plots amended with straw than with manure. Our results show that, on the long-term, only manure amendment seemed able both to store C and nutrients whereas both manure and straw led to greater microphagous nematode communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+for PRIMER. Guide to software and statistical methods, Plymouth

    Google Scholar 

  • Bardgett RD, Cook R, Yeates GW, Denton CS (1999) The influence of nematodes on below-ground processes in grassland ecosystems. Plant Soil 212:23–33

    Article  CAS  Google Scholar 

  • Berkelmans R, Ferris H, Tenuta M, van Bruggen AHC (2003) Effects of long-term crop management on nematode trophic levels other than plant feeders disappear after 1 year of disruptive soil management. Appl Soil Ecol 23:223–235

    Article  Google Scholar 

  • Blanchart E, Villenave C, Viallatoux A, Barthès B, Girardin C, Azontonde A, Feller C (2006) Effect of a cover plant (Mucuna pruriens var. utilis) on the communities of soil macrofauna and nematofauna, under maize cultivation, in South Benin. Eur J Soil Biol 42:136–144

    Article  Google Scholar 

  • Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19

    Article  Google Scholar 

  • Bulluck LR, Barker KR, Ristaino JB (2002) Influences of organic and synthetic soil fertility amendments on nematode trophic groups and community dynamics under tomatoes. Appl Soil Ecol 21:233–250

    Article  Google Scholar 

  • Coleman D, Oades JM, Uehara G (1989) Dynamics of soil organic matter in tropical ecosystems. University of Hawaii Press, Hawaii

    Google Scholar 

  • Dabin B (1967) Application des dosages automatiques à l’analyse des sols. 3ème partie. Cahiers ORSTOM. Sér Pédologie 5:257–286

    CAS  Google Scholar 

  • Djigal D, Brauman A, Diop A, Chotte J-L, Villenave C (2004) Influence of some bacterial-feeding nematodes (Cephalobidae) on soil microbial community during mays growth. Soil Biol Biochem 36:323–331

    Article  CAS  Google Scholar 

  • Ekelund F, Saj S, Vestergård M, Bertaux J, Mikola J (2009) The “soil microbial loop” is not always needed to explain protozoan stimulation of plants. Soil Biol Biochem 41:2336–2342

    Article  CAS  Google Scholar 

  • Ettema CH, Bongers T (1993) Characterization of nematode colonisation and succession in disturbed soil using the maturity index. Biol Fertil Soils 16:79–85

    Article  Google Scholar 

  • FAO (1995) Food and agriculture organization of the United Nations. FAO fertilizer yearbook, Rome

    Google Scholar 

  • FAO/UNESCO (1994) Soil map of the world: ISRIC (Hrsg.). Wageningen

  • Ferris H, Bongers T, de Goede R (2001) A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl Soil Ecol 18:13–29

    Article  Google Scholar 

  • Fontes J, Guinko S (1995) Carte de la végétation et du sol du Burkina Faso. Ministère de la coopération francaise, Note explicative, Toulouse

    Google Scholar 

  • Freckman DW, Caswell EP (1985) The ecology of nematodes in agroecosystems. Ann Rev Phytopathol 23:275–296

    Article  Google Scholar 

  • Fu S, Coleman DC, Hendrix PF, Crossley DA Jr (2000) Responses of trophic groups of soil nematodes to residue application under conventional tillage and no-till regimes. Soil Biol Biochem 32:1731–1741

    Article  CAS  Google Scholar 

  • Ghosh PK, Ajay, Bandyopadhyay KK, Manna MC, Mandal KG, MA K, Hati KM (2004) Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics. II. Dry matter yield, nodulation, chlorophyll content and enzyme activity. Bioresource Technol: 85–93

  • Griffiths BS (1994) Microbial-feeding nematodes and protozoa in soil: their effects on microbial activity and nitrogen mineralisation in decomposition hotspots and the rhizosphere. Plant Soil 164:25–33

    Article  CAS  Google Scholar 

  • Griffiths BS, Ritz K, Wheatley RE (1994) Nematodes as indicators of enhanced microbiological activity in a Scottish organic farming system. Soil Use Manage 10:20–24

    Article  Google Scholar 

  • Guiraud G (1984) Contribution du marquage isotopique à l’évaluation de transferts d’azote entre les compartiments organiques et minéraux dans les systèmes sol-plante. Université Pierre et Marie Curie, Paris VI

    Google Scholar 

  • Hai B, Diallo NH, Sall S, Haesler F, Schauss K, Bonzi M, Assigbetse A, Chotte J-L, Munch J-C, Schloter M (2009) Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agro-ecosystems. Appl Environ Microbiol 75:4993–5000

    Article  CAS  PubMed  Google Scholar 

  • Hien E (2004) Dynamique du carbone dans un Acrisol ferrique du Centre Ouest Burkina: influence des pratiques culturales sur le stock et la qualité de la matière organique. Thesis, ENSAM, Montpellier

    Google Scholar 

  • Hodge A, Robinson D, Fitter AH (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    Article  CAS  PubMed  Google Scholar 

  • Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 55:119–140

    Article  Google Scholar 

  • Khan Z, Kim YH (2007) Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Appl Soil Ecol 35:370–379

    Article  Google Scholar 

  • Kruskal JB, Wish M (1978) Multidimensional scaling. Sage University paper series on quantitative applications in the social sciences. Sage Publications, Beverly Hills and London

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lee KE, Pankhurst CE (1992) Soil organisms and sustainable productivity. Aust J Soil Res 30:855–892

    Article  Google Scholar 

  • Liang W, Lou YL, Li Q, Zhong S, Zhang X, Wang J (2009) Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biol Biochem 41:883–890

    Article  CAS  Google Scholar 

  • Luc M, Sikora RA, Bridge J (1990) Plant parasitic nematodes in subtropical and tropical agriculture. CAB international

  • McSorley R, Frederick JJ (1999) Nematode population fluctuations during decomposition of specific organic amendments. J Nematol 31:37–44

    CAS  PubMed  Google Scholar 

  • Murwira HK (2003) Managing Africa’s soils: approaches and challenges. In: Gichuru MP, Bationo A, Bekunda MA, Goma HC, Mafangoya PL, Mugendi DN, Murwira HM, Nandwa SM, Nyathi P, Swift M (eds) Soil fertility management in Africa: a regional perspective. Academy Science, Nairobi, p 306

    Google Scholar 

  • Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments—a review. Appl Soil Ecol 44:101–115

    Article  Google Scholar 

  • Okada H, Harada H (2007) Effects of tillage and fertilizer on nematode communities in a Japanese soybean field. Appl Soil Ecol 35:582–598

    Article  Google Scholar 

  • Parmelee RW, Alston DG (1986) Nematode trophic structure in conventional and no-tillage agroecosystems. J Nematol 18:403–407

    CAS  PubMed  Google Scholar 

  • Pichot J, Sedogo MP, Poulain JF, Arrivets J (1981) Evolution de la fertilité d’un sol ferugineux tropical sous l’influence de fumures minérales et organiques. Agron Trop 36:122–133

    Google Scholar 

  • Pieri C (1989) Fertilité des terres de savanes. Bilan de trente ans de recherche et de développement agricoles au sud du Sahara, Ministere de la coopération-CIRAD, Paris

    Google Scholar 

  • Sanchez PA, Shepherd KD, Soule MJ, Place FM, Mokwunye AU, Buresh RJ, Izac AN, Kwesiga FR, Ndiritu CG, Woomer PL (1997) Soil fertility replenishment in Africa: an investment in natural resource capital. In: Buresh RJ, Sanchez PA, Calhoun F (eds) Replenishing soil fertility in Africa. SSSA Special Publication, Madison, pp 1–41

    Google Scholar 

  • Sedogo PM (1993) Evolution des sols ferrugineux lessivés sous culture: incidence des mode de gestion de la fertilité, Abidjan

  • Seinhorst JW (1962) Modifications of the elutriation method for extracting nematodes from soil. Nematologica 8:117–128

    Article  Google Scholar 

  • Sparling GP (1994) Low-input agriculture: matching of organic resources, soil microbial activity and plant nutrient demand. Soil Biota—Management. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Sustainable farming systems. CSIRO, Melbourne, pp 209–216

    Google Scholar 

  • SPSS (2008) SPSS for Windows, release 12.0.1 SPSS. Chicago, USA

  • Verhoef HA, Brussaard L (1990) Decomposition and nitrogen mineralization in natural and agroecosystems: the contribution of soil animals. Biogeochemistry 11:175–211

    Article  Google Scholar 

  • Villenave C, Bongers T, Ekschmitt K, Djigal D, Chotte J-L (2001) Changes in nematode communities following cultivation of soils after fallow periods of different length. Appl Soil Ecol 17:43–52

    Article  Google Scholar 

  • Villenave C, Bongers T, Ekschmitt K, Fernandes P, Oliver R (2003) Changes in nematode communities after manuring in millet fields in Senegal. Nematology 5:351–358

    Article  Google Scholar 

  • Villenave C, Ekschmitt K, Nazaret S, Bongers T (2004) Interactions between nematodes and microbial communities in a tropical soil following manipulation of the soil food web. Soil Biol Biochem 36:2033–2043

    Article  CAS  Google Scholar 

  • Yeates GW, Newton PCD (2009) Long-term changes in topsoil nematode populations in grazed pasture under elevated atmospheric carbon dioxide. Biol Fertil Soils 45:799–808

    Article  CAS  Google Scholar 

  • Yeates GW, Bongers T, de Goede RGM, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25:315–331

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nemageco-Icones project funded by Agence de l’Environnement et de la Maîtrise de l’Energie (ADEME, France) and the MICROBES project funded by the Agence Nationale de la Recherche (ANR Biodiversité 2005, France).

We gratefully acknowledge T. Tebby for carefully reading the manuscript and English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Villenave.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villenave, C., Saj, S., Pablo, AL. et al. Influence of long-term organic and mineral fertilization on soil nematofauna when growing Sorghum bicolor in Burkina Faso. Biol Fertil Soils 46, 659–670 (2010). https://doi.org/10.1007/s00374-010-0471-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-010-0471-y

Keywords

Navigation