Skip to main content

Advertisement

Log in

Fate of 15N after combined application of rabbit manure and inorganic N fertilizers in a rice–wheat rotation system

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The present study was carried out on pot experiments with rice (Oryza sativa L. cv. Wuyujing 7) and winter wheat (Triticum aestivum L. cv. Yangmai 6) rotation in a sandy and a clayey soil fertilized with 15N-labeled ammonium sulfate (AS) and 15N-labeled rabbit feces so as to study the mechanisms of reduction of fertilizer N loss by organic fertilizers. The treatments included: (1) control without any N fertilizer application; (2) fertilization with 15N-labeled AS (IF); (3) fertilization with labeled rabbit feces (OF); (4) fertilization with either 40% 15N-labeled rabbit feces and 60% unlabeled AS (IOF1) or (5) 40% unlabeled rabbit feces and 60% 15N-labeled AS (IOF2). In the rice season, the IOF treatments compared to the IF treatment decreased the percentage of lost fertilizer N from the sandy and clayey soils, whereas it increased the percentage of fertilizer N, present as mineral N and microbial biomass N (MBN). During the second season, when soils were cropped to winter wheat, the IOF treatments in comparison with the IF or OF treatment increased mineral N and MBN contents of soils sampled at tillering, jointing, and heading stages, and such increases were derived from the organic N fertilizer in the sandy soil and from the inorganic N fertilizer in the clayey soil. The increased MBN in the IOF treatments was derived from inorganic fertilizers applied both soils. Therefore, in the IOF treatment, during the rice season, the organic N increased the immobilization of inorganic N in MBN, while the inorganic N fertilizer applied to both soils stimulated the uptake of organic N and the organic N fertilizer increased the uptake of inorganic N by winter wheat; the inorganic N increased the recovery of organic N in the plant-soil system after harvesting the winter wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen SC, Jose S, Nair PKR, Brecke BJ, Ramsey CL (2004) Competition for 15N-labeled fertilizer in a pecan (Carya illinoensis K. Koch)-cotton (Gossypium hirsutum L.) alley cropping system in the southern United States. Plant Soil 263:151–164. doi:10.1023/B:PLSO.0000047732.95283.ac

    Article  CAS  Google Scholar 

  • Anderson TH (2003) Microbial eco-physiological indicators to asses soil quality. Agr Ecosyst Environ 98:285–293. doi:10.1016/S0167-8809(03)00088-4

    Article  Google Scholar 

  • Anderson TH, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effect of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Bio Biochem 25:393–395. doi:10.1016/0038-0717(93)90140-7

    Article  Google Scholar 

  • Bar AR, Baggie I, Sanginga N (2000) The use of Sesbania (Sesbania rostrata) and urea in lowland rice production in Sierra Leone. Agroforest Syst 48:111–118. doi:10.1023/A:1006345920266

    Article  Google Scholar 

  • Barkle GF, Stenger R, Brown TN, Ledgard SF, Painter DJ (2001) Fate of the 15N-labeled faeces fraction of dairy farm effluent (DFE) irrigated onto soils under different water regimes. Nutr Cycl Agroecosys 59:85–93. doi:10.1023/A:1009896707394

    Article  Google Scholar 

  • Bengtsson G, Bergwall C (2000) Fate of 15N labeled nitrate and ammonium in a fertilized forest soil. Soil Biol Biochem 32:545–557. doi:10.1016/S0038-0717(99)00183-2

    Article  CAS  Google Scholar 

  • Blagodatskaya E, Anderson TH (1999) Adaptive responses of soil microbial communities under experimental acid stress in controlled laboratory studies. Appl Soil Ecol 11:207–216. doi:10.1016/S0929-1393(98)00148-6

    Article  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131. doi:10.1007/s00374-008-0334-y

    Article  Google Scholar 

  • Blankenau K, Olfs HW, Kuhlmann H (2002) Strategies to improve the use efficiency of mineral fertilizer nitrogen applied to winter wheat. J Agron Crop Sci 188:146–154. doi:10.1046/j.1439-037X.2002.00548.x

    Article  Google Scholar 

  • Breine JJ, Teugels GG, Podoor N, Ollevier F (1996) First data on rabbit dung as a water fertilizer in tropical fish culture and its effect on the growth of Oreochromis niloticus (Teleostei, Cichlidae). Hysrobiologia 321:101–107. doi:10.1007/BF00023167

    Article  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis part 2. Chemical and Microbiological properties. ASA-SSSA, Madison, WI, pp 595–624

    Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method for measuring microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi:10.1016/0038-0717(85)90144-0

    Article  CAS  Google Scholar 

  • Cassman KG, Peng S, Olk DC, Ladha JK, Reichardt W, Dobermann A, Singh U (1998) Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res 56:7–39. doi:10.1016/S0378-4290(97)00140-8

    Article  Google Scholar 

  • Edmeades DC (2003) The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosys 66:165–180. doi:10.1023/A:1023999816690

    Article  CAS  Google Scholar 

  • Elmacı OL, Seçer M, Erdemir O, Iqbal N (2002) Ammonium fixation properties of some arable soils from the Aegean region of Turkey. Eur J Agron 17:199–208. doi:10.1016/S1161-0301(02)00010-2

    Article  Google Scholar 

  • Gentile R, Vanlauwe B, Chivenge P, Six J (2008) Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations. Soil Biol Biochem 40:2375–2384. doi:10. 1016/j.soilbio.2008.05.018

    Article  CAS  Google Scholar 

  • Gil MV, Carballo MT, Calvo LF (2008) Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients. Waste Manag 28:1432–1440. doi:10.1016/j.wasman.2007.05.009

    Article  CAS  PubMed  Google Scholar 

  • Gill HS, Meelu OP (1982) Studies on the substitution of inorganic fertilizers with organic manure and their effect on soil fertility in rice–wheat rotation. Nutr Cycl Agroecosys 3:303–314. doi:10. 1007/BF01048935

    CAS  Google Scholar 

  • Hassink J (1994) Effect of soil texture on the size of the microbial biomass and on the amount of C and N mineralized per unit of microbial biomass in Dutch grassland soils. Soil Biol Biochem 26:1573–1581. doi:10.1016/0038-0717(94)90100-7

    Article  CAS  Google Scholar 

  • Hauck RD (1982) Nitrogen–isotope ratio analysis. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis part 2: chemical and microbiological properties. Agronomy Monograph 9. SSSA and ASA, Madison, WI, pp 735–779

    Google Scholar 

  • Jansson SL, Persson J (1982) Mineralization and immobilization of soil nitrogen. In: Stevenson FJ (ed) Nitrogen in agricultural soils. Agronomy no. 22. ASA, CSSA, SSSA, Madison, WI, pp 229–252

    Google Scholar 

  • Jenkinson DS, Fox RH, Rayner JH (1985) Interactions between fertilizer nitrogen and soil nitrogen—the so-called ‘priming’effect. J Soil Sci 36:425–444. doi:10.1111/j.1365-2389.1985.tb00348.x

    Article  CAS  Google Scholar 

  • Jensen LS, Pedersen IS, Hansen TB, Nielsen NE (2000) Turnover and fate of 15N-labeled cattle slurry ammonium-N applied in the autumn to winter wheat. Eur J Agron 12:23–35. doi:10.1016/S1161-0301(99)00040-4

    Article  CAS  Google Scholar 

  • Jörgensen RG, Müeller T (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEN value. Soil Biol Biochem 28:33–37. doi:10.1016/0038-0717(95)00101-8

    Article  Google Scholar 

  • Ju XT, Liu XJ, Pan JR, Zhang FS (2007) Fate of 15N-Labeled urea under a winter wheat summer maize rotation on the north China plain. Pedosphere 17:52–61. doi:10.1016/S1002-0160(07)60007-1

    Article  CAS  Google Scholar 

  • Keeney DR, Nelson DW (1982) Nitrogen—inorganic forms. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Agronomy 9, 2nd edn. American Society of Agronomy, Madison, WI, pp 643–698

    Google Scholar 

  • Kramer AW, Doane TA, Horwath WR, van Kessel C (2001) Combining fertilizer and organic inputs to synchronize N supply in alternative cropping systems in California. Agr Ecosyst Environ 91:233–243. doi:10.1016/S0167-8809(01)00226-2

    Article  Google Scholar 

  • Kramer AW, Doane TA, Horwath WR, van Kessel C (2002) Short-term nitrogen-15 recovery vs long-term total soil N gains in conventional and alternative cropping systems. Soil Biol Biochem 34:43–50. doi:10.1016/S0038-0717(01)00149-3

    Article  CAS  Google Scholar 

  • Ladha JK, Hill JE, Duxbury JM, Gupta RK, Buresh RJ (2003) Improving the productivity and sustainability of rice–wheat system: issues and impacts. ASA Special Publication, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, p 231

    Google Scholar 

  • López-Bellido L, López-Bellido RJ, Redondo R (2005) Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen application. Field Crops Res 94:86–97. doi:10.1016/j.fcr.2004.11.004

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press

  • Meng L, Zhang XL, Jiang XF, Wang QJ, Huang QW, Xu YC, Yang XM, Shen QR (2009) Effects of partial mineral nitrogen substitution by organic fertilizer nitrogen on the yields of rice grains and their proper substitution rate. Scientia Agricultura Sinica 42:532–542. doi:10.3864/j.issn.0578-1752.2009.02.019

    CAS  Google Scholar 

  • Murashkina MA, Southard RJ, Pettygrove GS (2007) Silt and fine sand fractions dominate K fixation in soils derived from granitic alluvium of the San Joaquin Valley, California. Geoderma 141:283–293. doi:10.1016/j.geoderma.2007.06.011

    Article  CAS  Google Scholar 

  • Pan GX, Zhou P, Li ZP, Pete S, Li LQ, Qiu DS, Zhang XH, Xu XB, Shen SY, Chen XM (2009) Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agr Ecosys Environ 131:274–280. doi:10.1016/j.agee.2009.01.020

    Article  CAS  Google Scholar 

  • Perelo LW, Jimenez M, Munch JC (2006) Microbial immobilisation and turnover of 15N labeled substrates in two arable soils under field and laboratory conditions. Soil Biol Biochem 38:912–922. doi:10.1016/j.soilbio.2005.07.013

    Article  Google Scholar 

  • Rowe EC, Mv N, Suprayogo D, Hairiah K, Giller KE, Cadisch G (2001) Root distributions partially explain 15N uptake patterns in Gliricidia and Peltophorum hedgerow intercropping systems. Plant Soil 235:167–179. doi:10.1023/A:1011961409353

    Article  CAS  Google Scholar 

  • Sikora LJ, Enkiri NK (2001) Uptake of 15N fertilizer in compost-amended soils. Plant Soil 235:65–73. doi:10.1023/A:1011855431544

    Article  CAS  Google Scholar 

  • Sørensen P, Jensen ES (1995) Mineralization-immobilization and plant uptake of nitrogen as influenced by the spatial distribution of cattle slurry in soils of different texture. Plant Soil 173:283–291. doi:10.1007/BF00011466

    Article  Google Scholar 

  • Sørensen P, Jensen ES (1998) The use of 15N labelling to study the turnover and utilization of ruminant manure N. Biol Fertil Soils 28:56–63. doi:10.1007/s003740050463

    Article  Google Scholar 

  • Thomsen IK (2000) C and N transformations in 15N cross-labeled solid ruminant manure during anaerobic and aerobic storage. Bioresource Technol 72:267–274. doi:10.1016/S0960-8524(99)00114-5

    Article  CAS  Google Scholar 

  • Tian Y, Haibara K, Toda H, Ding F, Liu Y, Choi D (2008) Microbial biomass and activity along a natural pH gradient in forest soils in a karst region of the upper Yangtze River, China. J For Res 13:205–214. doi:10.1007/s10310-008-0073-9

    Article  CAS  Google Scholar 

  • Timsina J, Connor DJ (2001) Productivity and management of rice–wheat cropping systems: issues and challenges. Field Crops Res 69:93–132. doi:10.1016/S0378-4290(00)00143-X

    Article  Google Scholar 

  • Van Cleemput O, Hofman G, Baert L (1981) Fertilizer nitrogen balance study on sandy loam with winter wheat. Fertilizer Res 2:119–126. doi:10.1007/BF01080098

    Article  Google Scholar 

  • Van Veen JA, Ladd JN, Amato M (1985) Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with [14C(U)]glucose and[15N](NH4)2SO4 under different moisture regimes. Soil Biol Biochem 17:747–756. doi:10.1016/0038-0717(85)90128-2

    Article  Google Scholar 

  • Weigel C (1993) Fertilisations organiques. Pour raccourcir la chaine alimentaire. Aqua Rev 51:16–23

    Google Scholar 

  • Yadav RL, Dwivedi BS, Prasad K, Tomar OK, Shurpali NJ, Pandey PS (2000) Yield trends, and changes in soil organic-C and available NPK in a long-term rice–wheat system under integrated use of manures and fertilisers. Field Crops Res 68:219–246. doi:10.1016/S0378-4290(00)00126-X

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by China Science and Technology Ministry (2007CB109304). We also thank Professor Warren A. Dick from Ohio State University, USA, and Professor Paolo Nannipieri from University of Florence, Italy, for their careful revisions of the manuscript. Mao would like to thank the National Science Foundation (EAR-0843996) for supporting his research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Chun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, CL., Shen, QR., Mao, JD. et al. Fate of 15N after combined application of rabbit manure and inorganic N fertilizers in a rice–wheat rotation system. Biol Fertil Soils 46, 127–137 (2010). https://doi.org/10.1007/s00374-009-0420-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-009-0420-9

Keywords

Navigation