Skip to main content
Log in

Dinitrogen fixation by biological soil crusts in an Inner Mongolian steppe

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Eurasian steppe ecosystems are nitrogen-limited and suffer additionally from high grazing intensities in many areas. Soil surface-bound cyanobacteria are able to fix nitrogen and can be the major source of plant available nitrogen in such ecosystems. In this study, the abundance and dinitrogen fixation capacity of the most common soil surface-bound microbial and lichen species were determined at an ungrazed, a winter-grazed, and a heavily grazed steppe site in the Xilin River catchment, Inner Mongolia, People’s Republic of China. The microorganisms were identified as Nostoc spec. and the lichen species as Xanthoparmelia camtschadalis (Ach.) Hale by a combination of classical light microscopy, confocal laser scanning microscopy and molecular analysis of the internal transcribed spacer (ITS1) region of ribosomal RNA. Both species were found exclusively at grazed steppe sites, with a clear difference in abundance depending on the grazing intensity. At the winter-grazed site, Nostoc was more abundant than Xanthoparmelia; for the heavily grazed site, the opposite was found. N2 fixation was quantified with both the acetylene reduction method and 15N2 incubation. Cyanobacterial colonies of Nostoc fixed N2 vigorously, whereas X. camtschadalis did not at all. The fraction of nitrogen derived from the fixation of molecular nitrogen in Nostoc was 73%, calculated from 15N natural abundance measurements of Nostoc with X. camtschadalis as reference. The conservatively calculated N2 uptake by Nostoc was 0.030–0.033 kg N ha−1 for the heavily grazed site and 0.080–0.087 kg N ha−1 for the winter-grazed site for the growing seasons of 2004 and 2005, respectively. Together with previous findings, this study demonstrates that N2 fixation by Nostoc can potentially replace significant amounts, if not all, of the nitrogen lost in the form of N2O and NO soil emissions in this steppe ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004) Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431:181–184. doi:10.1038/nature02850

    Article  PubMed  CAS  Google Scholar 

  • Belnap J (2001) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Springer, Berlin, pp 241–261

    Google Scholar 

  • Belnap J, Lange OL (2001) Structure and functioning of biological soil crusts: a synthesis. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Springer, Berlin, pp 471–479

    Google Scholar 

  • Belnap J, Büdel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Springer, Berlin, pp 3–30

    Google Scholar 

  • Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosyst 57:235–270. doi:10.1023/A:1009890514844

    Article  Google Scholar 

  • Boyer SL, Flechtner VR, Johansen JR (2001) Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 18:1057–1069

    PubMed  CAS  Google Scholar 

  • Büdel B (2001) Biological soil crusts of Asia including the Don and Volga region. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Springer, Berlin, pp 87–94

    Google Scholar 

  • Castenholz RW (2001) General characteristics of the cyanobacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Vol. 1: The archaea and the deeply branching and phototrophic bacteria. Springer, Berlin, pp 474–487

    Google Scholar 

  • Chen J, Zhang MY, Wang L, Shimazaki H, Tamura M (2005) A new index for mapping lichen-dominated biological soil crusts in desert areas. Remote Sens Environ 96:165–175. doi:10.1016/j.rse.2005.02.011

    Article  Google Scholar 

  • Coxson DS, Kershaw KA (1983) The pattern of in situ summer nitrogenase activity in terrestrial Nostoc commune from Stipa-Bouteloa grassland, southern Alberta. Can J Bot 61:2686–2693. doi:10.1139/b83-295

    Article  CAS  Google Scholar 

  • Doods WK, Gudder DA, Mollenhauer D (1995) The ecology of Nostoc. J Phycol 31:2–18. doi:10.1111/j.0022-3646.1995.00002.x

    Article  Google Scholar 

  • Evans RD, Lange OL (2001) Biological soil crusts and ecosystem nitrogen and carbon dynamics. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Springer, Berlin, pp 263–279

    Google Scholar 

  • Evans RD, Johanson JR (1999) Microbiotic crusts and ecosystem processes. Crit Rev Plant Sci 18:183–225. doi:10.1016/S0735-2689(99)00384-6

    Article  Google Scholar 

  • Gao K, Yu A (2000) Influence of CO2, light and watering on growth of Nostoc flagelliforme mats. J Appl Phycol 12:185–189. doi:10.1023/A:1008123203409

    Article  Google Scholar 

  • Guan X, Ruan X (2000) The characters of bionitrogen fixation of Nostoc commune and its function in nitrogen cycle in Inner Mongolia grassland. Acta Agrestia Sin 8:13–17

    Google Scholar 

  • Hale ME (1990) A synopsis of the lichen genus Xanthoparmelia (Vainio) Hale (Ascomycotina, Parmeliaceae). Smithson Contrib Bot 74:1–250

    Google Scholar 

  • Hardy RW, Burns RC, Holsten RD (1973) Applications of the acetylene–ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5:47–81. doi:10.1016/0038-0717(73)90093-X

    Article  CAS  Google Scholar 

  • Herdman M, Castenholz RW, Rippka R (2001) Form-genus VIII. Nostoc Vaucher 1803. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Vol. 1: The archaea and the deeply branching and phototrophic bacteria. Springer, Berlin, pp 575–580

    Google Scholar 

  • Holst J, Liu C, Brüggemann N, Butterbach-Bahl K, Zheng X, Wang Y, Han S, Yao Z, Han X (2007) Microbial N turnover and N-oxide (N2O/NO/NO2) fluxes in semi-arid grassland of Inner Mongolia. Ecosystems (N Y, Print) 10:623–634. doi:10.1007/s10021-007-9043-x

    Article  CAS  Google Scholar 

  • Hoffmann C, Funk R, Li Y, Sommer M (2008) Effect of grazing on wind driven carbon and nitrogen ratios in the grasslands of Inner Mongolia. Catena, doi:10.1016/j.catena.2008.06.003

    Google Scholar 

  • Huneck S, Ahti T, Cogt U, Poelt J, Sipman H (1992) Zur Verbreitung und Chemie von Flechten der Mongolei. III. Ergebnisse der Mongolisch-Deutschen Biologischen Expedition seit 1962. Nova Hedwig 54:277–308

    Google Scholar 

  • Hüser R (1966) Experiences with the nitrogen-15 tracer technique in estimating the microbial fixation of elementary nitrogen in the organic matter of forest soils. J Appl Radiat Isot (Spec.)(Suppl.):457–469

  • Janse I, Meima M, Edwin W, Kardinaal A, Zwart G (2003) High-resolution differentiation of cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:6634–6643. doi:10.1128/AEM.69.11.6634-6643.2003

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Meurer M (2001) Die Steppen Nordchinas und ihre Belastung durch weide- und landwirtschaftliche Landnutzung. Geogr Rundsch 10:48–52

    Google Scholar 

  • Kajiyama S, Kanzaki H, Kawazu K, Kobayashi A (1998) Nostofungicidine, an antifungal lipopeptide from the field grown terrestrial blue-green alga Nostoc commune. Tetrahedron Lett 39:3737–3740. doi:10.1016/S0040-4039(98)00573-5

    Article  CAS  Google Scholar 

  • Liu Z, Wang S, Han J, Wang Y, Chen Z (2004) Distribution of lichens biomass and its affecting factors during restoration process of Inner Mongolia steppe. Chin J Appl Ecol 15:1294–1296

    Google Scholar 

  • Liu C, Holst J, Brüggemann N, Butterbach-Bahl K, Yao Z, Jin Y, Han S, Han X, Krümmelbein J, Horn R, Zheng X (2007) Grazing reduces methane uptake by soils in a semi-arid steppe in Inner Mongolia, China. Atmos Environ 41:5948–5958. doi:10.1016/j.atmosenv.2007.03.017

    Article  CAS  Google Scholar 

  • Ribbe M, Gadkari D, Meyer O (1997) N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase. J Biol Chem 272:26627–26633. doi:10.1074/jbc.272.42.26627

    Article  PubMed  CAS  Google Scholar 

  • Rikkinen J (2002) Cyanolichens: an evolutionary overview. In: Rai AN, Bergman B, Rasmussen R (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 31–72

    Google Scholar 

  • Ripley EA (1992) Grassland Climate. In: Coupland RT (ed) Ecosystems of the world. Vol 8A: Natural grasslands. Introduction and western hemisphere. Elsevier, Amsterdam, pp 7–24

    Google Scholar 

  • Rippka R, Castenholz RW, Herdman M (2001) Subsection IV. (Formerly Nostocales Castenholz 1989b sensu Rippka, Deruelles, Waterbury, Herdman and Stanier 1979). In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Vol. 1: The archaea and the deeply branching and phototrophic bacteria. Springer, Berlin, pp 563–566

    Google Scholar 

  • Russow R, Veste M, Böhme F (2005) A natural 15N approach to determine the biological fixation of atmospheric nitrogen by biological soil crusts of Negev desert. Rapid Commun Mass Spectrom 19:3451–3456. doi:10.1002/rcm.2214

    Article  PubMed  CAS  Google Scholar 

  • Scherer S, Ernst A, Chen TW, Böger P (1984) Rewetting of drought-resistant blue-green algae: time course of water uptake and reappearance of repiration, photosynthesis, and nitrogen fixation. Oecologia 62:418–423. doi:10.1007/BF00384277

    Article  Google Scholar 

  • Scherer S, Zhong ZP (1991) Desiccation independence of terrestrial Nostoc commune ecotypes (cyanobacteria). Microb Ecol 22:271–283. doi:10.1007/BF02540229

    Article  Google Scholar 

  • Shearer G, Kohl HD, Virhinia RA, Bryan BA, Skeeters JL, Nilsen ET, Sharifi MR, Rundel PW (1983) Estimates of N2-fixation from variation in the natural abundance of 15N in Sonoran desert ecosystem. Oecologia 56:365–373. doi:10.1007/BF00379714

    Article  Google Scholar 

  • Shirkey B, McMaster NJ, Smith SC, Wright DJ, Rodriguez H, Jaruga P, Birincioglu M, Helm RF, Potts M (2003) Genomic DNA of Nostoc commune (Cyanobacteria) becomes covalently modified during long-term (decades) desiccation but is protected from oxidative damage and degradation. Nucleic Acids Res 31:2995–3005. doi:10.1093/nar/gkg404

    Article  PubMed  CAS  Google Scholar 

  • Steffens M, Kölbl A, Totsche KU, Kögel-Knabner I (2008) Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P.R. China). Geoderma 143:63–72. doi:10.1016/j.geoderma.2007.09.004

    Article  CAS  Google Scholar 

  • Tamaru Y, Takami Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol 71:7327–7333. doi:10.1128/AEM.71.11.7327-7333.2005

    Article  PubMed  CAS  Google Scholar 

  • Tong C, Wu J, Yong S, Yang J, Yong W (2004) A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. J Arid Environ 59:133–149. doi:10.1016/j.jaridenv.2004.01.004

    Article  Google Scholar 

  • Tsygankov AA (2007) Nitrogen-fixing cyanobacteria: a review. Appl Biochem Microbiol 43:279–288. doi:10.1134/S0003683807030040

    Article  CAS  Google Scholar 

  • Vlassak K, Paul EA, Harris RE (1973) Assessment of biological nitrogen fixation in grasslands and associated sites. Plant Soil 38:637–649. doi:10.1007/BF00010702

    Article  CAS  Google Scholar 

  • Warren SD, Eldridge DJ (2001) Biological soil crusts and livestock in arid ecosystems: are they compatible? In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Springer, Berlin, pp 401–415

    Google Scholar 

  • Wirth V (1995) Flechtenflora. Ulmer, Stuttgart

    Google Scholar 

  • Wright D, Prickett T, Helm RF, Potts M (2001) Form species Nostoc commune (Cyanobacteria). Int J Syst Evol Microbiol 51:1839–1852

    PubMed  CAS  Google Scholar 

  • Wright DJ, Smith SC, Joardar V, Scherer S, Jervis J, Warren A, Helm RF, Potts M (2005) UV irradiation and desiccation modulate the three-dimensional extracellular matrix Nostoc commune (Cyanobacteria). J Biol Chem 280:40271–40281. doi:10.1074/jbc.M505961200

    Article  PubMed  CAS  Google Scholar 

  • Zechmeister-Boltenstern S, Kinzel H (1990) Non-symbiotic nitrogen fixation associated with temperate soils in relation to soil properties and vegetation. Soil Biol Biochem 22:1075–1084. doi:10.1016/0038-0717(90)90032-U

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work has been supported by the German Research Foundation (DFG, Research Unit No. 536, “Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate”, MAGIM) and by the National Natural Science Foundation of China (NSFC, project no. 40331014). Special thanks go to Zhihong Yu and Shubin Yu for their assistance during the collection of the sample material, to Ina Zimmer for DNA isolation, and to Rudolf Meier for his support during mass spectrometric analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Brüggemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holst, J., Butterbach-Bahl, K., Liu, C. et al. Dinitrogen fixation by biological soil crusts in an Inner Mongolian steppe. Biol Fertil Soils 45, 679–690 (2009). https://doi.org/10.1007/s00374-009-0378-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-009-0378-7

Keywords

Navigation