Skip to main content

Advertisement

Log in

Diversity and seasonal variations of mycorrhiza and rhizosphere bacteria in three common plant species at the Slovenian Ljubljana Marsh

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Interactions between plants and microorganisms can significantly affect plant health and productivity as well as ecosystem functioning. Detailed knowledge of the tripartite relationships between plants, fungi, and bacteria, and their environment is still limited. In the present study, the soils adjacent to three plant species (Cruciata laevipes, Mentha piperita, Equisetum arvense) in the Ljubljana Marsh and the bulk, plant-free soil were analyzed for their bacterial community structure in June and October 2006. The terminal restriction fragment length polymorphism analysis indicated a different bacterial community structure in the rhizosphere and in bulk soil, however, with almost no seasonal changes between late spring and autumn samples and no apparent impact of the three plant species. In addition, root colonization of the three plant species by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) was microscopically assessed monthly from May until October 2006. A presumably accidental correlation between monthly precipitation and the degree of arbuscule formation, with the latter lagging 1 month, was noted for M. piperita, the most heavily colonized of the three plant species. With all three plants, the phosphorus content in roots correlated positively with most AMF structures. Microsclerotia of DSE were mainly abundant in autumn samples. Fungal diversity in roots was estimated using temporal temperature gradient gel electrophoresis separation of the fungal polymerase chain reaction products obtained for both 18S-rDNA and the 5.8S-ITS2-28S rDNA segments. No specific effects of either plant species or seasonal changes on mycorrhizal community structure were discernible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barrow J (2003) Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza 13:239–247

    Article  PubMed  CAS  Google Scholar 

  • Bohrer KE, Friese CF, Arnon JP (2004) Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza 14:329–337

    Article  PubMed  Google Scholar 

  • Börstler B, Renker C, Kahmen A, Buscot F (2006) Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biol Fertil Soils 42:286–298

    Article  Google Scholar 

  • Bremner JM, Keeney D (1965) Determination and isotopicratio analysis of different forms of nitrogen in soils: I. Apparatus and procedure for distillation and determination of ammonium. Soil Sci Soc Am. Proc 29:504–507

    Article  CAS  Google Scholar 

  • Burford JR, Bremner JM (1975) Relationship between the denitrification capacities of soils and total water-soluble and readily decomposable soil organic matter. Soil Biol Biochem 7:389–394

    Article  CAS  Google Scholar 

  • Chatzinotas A, Sandaa RA, Schonhuber W, Amann R, Daae FL, Torsvik V, Zeyer J, Hahn D (1998) Analysis of broad-scale differences in microbial community composition of two pristine forest soils. Syst Appl Microbiol 21:579–587

    PubMed  CAS  Google Scholar 

  • Egert M, Marhan S, Wagner B, Scheu S, Friedrich MW (2004) Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta-Lumbricidae). FEMS Microbiol Ecol 48:187–197

    Article  CAS  PubMed  Google Scholar 

  • Eilmus S, Rösch C, Bothe H (2007) Prokaryotic life in a potash-polluted marsh with emphasis on N-metabolizing microorganisms. Environ Poll 146:478–491

    Article  CAS  Google Scholar 

  • Ellenberg H (1988) Vegetation ecology of Central Europe. Cambridge University Press, Cambridge

    Google Scholar 

  • Fuchs B, Haselwandter K (2004) Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 14:277–281

    Article  PubMed  CAS  Google Scholar 

  • Füzy A, Biro B, Toth T, Hildebrandt U, Bothe H (2008) Drought, but not salinity, determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. J Plant Physiol 165:1181–1192

    Article  PubMed  CAS  Google Scholar 

  • Gardes M, Bruns T (1993) ITS primers with enhanced specifity for basidiomycetes- application of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Hacin J, Čop J, Mahne I (2001) Nitrogen mineralization in marsh meadows in relation to soil organic matter content and watertable level. J Plant Nutrit Soil Science 164:503–509

    Article  CAS  Google Scholar 

  • Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105:613–617

    Article  Google Scholar 

  • Hartl W, Putz B, Erhart E (2003) Influence of rates and timing of biowaste compost application on rye yield and soil nitrate levels. Europ J Soil Biol 39:129–139

    Article  Google Scholar 

  • Heijne B, van Dam D, Heil GW, Bobbink R (1996) Acidification effects on vesicular-arbuscular mycorrhizal (VAM) infection, growth and nutrient uptake of established heathland herb species. Plant Soil 179:197–206

    Article  CAS  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter A, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431

    Article  PubMed  CAS  Google Scholar 

  • Hernandez D, Fernandez JM, Plaza C, Polo A (2007) Water soluble organic matter of a degraded soil amended with pig slurry. Science Total Environ 378:101–103

    Article  CAS  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  PubMed  CAS  Google Scholar 

  • Kandeler E (1995) Organic matter by wet combustion. In: Schinner F, Ohlinger R, Kandeler E, Margesin R (eds) Methods in Soil Biology. Springer, Berlin, pp 397–398

    Google Scholar 

  • Kent AD, Smith DJ, Benson BJ, Triplett EW (2003) Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl Environ Microbiol 69:6768–6776

    Article  PubMed  CAS  Google Scholar 

  • Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecology Letters 3:137–141

    Article  Google Scholar 

  • Kraigher B, Stres B, Hacin J, Ausec L, Mahne I, van Elsas JD, Mandic-Mulec I (2006) Microbial activity and community structure in two drained fen soils in the Ljubljana Marsh. Soil Biol Biochem 38:2762–2771

    Article  CAS  Google Scholar 

  • Küster E (1990) Mikrobiologie von Moor und Torf. In: Göttlich K (ed) Moor und Torfkunde. E. Schweizertbart’sche Verlagsbuchhandlung, Stuttgart, pp 262–271

    Google Scholar 

  • Mandyam K, Jumpponen A (2008) Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endohytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment. Mycorrhiza 18:145–155

    Article  PubMed  Google Scholar 

  • Matekwor Ahulu E, Gollote M, Gianinazzi-Pearson VC, Nonaka M (2006) Coocurring plants forming distinct arbuscular mycorrhizal morphologies harbour similar AM fungal species. Mycorrhiza 17:37–49

    Article  PubMed  Google Scholar 

  • Mergel A, Kloos K, Bothe H (2001) Seasonal fluctuations in the population of denitrifying and N2-fixing bacteria in an acid soil of a Norway spruce forest. Plant Soil 230:145–160

    Article  CAS  Google Scholar 

  • Muthukumar T, Udaiyan K, Shanmughavel P (2004) Mycorrhiza in sedges-an overview. Mycorrhiza 14:65–77

    Article  PubMed  CAS  Google Scholar 

  • Olson SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2 Chemical and Microbiological Properties. ASA and SSSA, Madison, pp 403–430

    Google Scholar 

  • Orłowska E, Zubek S, Jurkiewicz A, Szarek-Lukaszewska G, Turnau K (2002) Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza 12:153–160

    Article  PubMed  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for cleaning roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–168

    Article  Google Scholar 

  • Phuyal M, Artz RRE (2008) Long-term nitrogen deposition increases phosphorus limitation of bryophytes in an ombotrophic bog. Plant Ecol 196:111–121

    Article  Google Scholar 

  • Pongrac P, Vogel-Mikus K, Kump P, Necemer M, Tolra R, Poschenreider C, Barcelo J, Regvar M (2007) Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. Chemosphere 69:1602–1609

    Article  PubMed  CAS  Google Scholar 

  • Rösch C, Bothe H (2005) Improved assessment of denitrifying, N2-fixing, and total community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. Appl Environ Microbiol 71:2026–2035

    Article  PubMed  CAS  Google Scholar 

  • Seliškar A (1988) Water, boggy marshy and grassy vegetation of Ljubljansko barje (the Ljubljana moor-eastern part). Scopolia 10:1–44

    Google Scholar 

  • Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl Environ. Microbiol. 58:291–295

    PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal Symbiosis, 2nd edn. Academic, San Diego also 3rd ed in 2008

    Google Scholar 

  • Šraj-Kržič N, Pongrac P, Klemenc M, Regvar M, Gaberscik A (2006) Mycorrhizal colonisation in plants from intermittent aquatic habitats. Aquat Bot 85:333–338

    Google Scholar 

  • Stres B, Danevčič T, Pal L, Mrkonjic Fuka M, Resman L, Leskovec S, Hacin J, Stopar D, Mahne I, I Mandic-Mulec I (2008) Influence of temperature and soilwater content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol Ecol 66:110–122

    Article  PubMed  CAS  Google Scholar 

  • Stukenbrock EH, Rosendahl S (2005) Distribution of dominant arbuscular mycorrhizal fungi among five plant species in undisturbed vegetation of coastal grassland. Mycorrhiza 15:497–503

    Article  PubMed  Google Scholar 

  • Torsvik V, Goksøyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    PubMed  CAS  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221 ISBN: 2-85340-774-8

    Google Scholar 

  • Van der Heijden MAG (2004) Arbuscular mycorrhizal fungi as support systems for seedling establishment in grasslands. Ecol Lett 7:293–303

    Article  Google Scholar 

  • Van der Heijden MAG, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Van der Heijden MAG, Bakker R, Verwaal J, Scheublin TR, Rutten M, Van Logtestjin R, Staehelin C (2006) Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grasslands. FEMS Microb Ecol 56:178–187

    Article  CAS  Google Scholar 

  • Van Hoewyk D, Wigand C, Groffman PM (2001) Endomycorrhizal colonization of Dasiphora floribunda, a native plant species of calcareous wetlands in eastern. Wetlands, New York, pp 431–436

    Google Scholar 

  • Vandenkoornhuyse P, Leyval C (1998) SSU rDNA sequencing and PCR-fingerprinting reveal genetic variation within Glomus mosseae. Mycologia 90:792–798

    Article  Google Scholar 

  • VanElsas JD, Mantynen V, Wolters AC (1997) Soil DNA extraction and assessment of the fate of Mycobacterium chlorophenolicum strain PCP-1 in different soils by 16 S ribosomal RNA gene sequence based on probable number PCR and immunofluorescence. Biol Fertil Soils 24:188–195

    Article  CAS  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  PubMed  CAS  Google Scholar 

  • Weishampel PA, Bedford BL (2006) Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 16:495–502

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innes MA, Gelfrand DH, Sninsky JJ, White TS (eds) PCR -protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol. doi:10.1111/j.1462-2920.2009.01882.x

  • Wirsel SGR (2004) Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology 48:129–138

    Article  CAS  PubMed  Google Scholar 

  • Wolfe BE, Weishampel PA, Klironomos JN (2006) Arbuscular mycorrhizal fungi and water table affect wetland plant community composition. J Ecol 94:905–914

    Article  Google Scholar 

  • Ypsilantis I, Sylvia DM (2007) Interactions of assemblages of mycorrhizal fungi with two Florida wetland plants. Appl Soil Ecol 35:261–271

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to M. Geoffrey Yates of Lewes, G. B. for helpful comments and for correcting the English. The work was supported by the following Slovenian projects: “Biology of Plants” (ARRS P1-0212), Microbiology and Biotechnology of Food and Environment (ARRS P4-116) and by COST 8.59 Phytotechnologies to Promote Sustainable Land Use Management and Improve Food Chain Safety.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Bothe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Likar, M., Regvar, M., Mandic-Mulec, I. et al. Diversity and seasonal variations of mycorrhiza and rhizosphere bacteria in three common plant species at the Slovenian Ljubljana Marsh. Biol Fertil Soils 45, 573–583 (2009). https://doi.org/10.1007/s00374-009-0361-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-009-0361-3

Keywords

Navigation