Skip to main content

Advertisement

Log in

Chemical, physical, and biochemical soil properties and plant roots as affected by native and exotic plants in Neotropical arid zones

  • Short Communication
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

At ‘Cerro Saroche’ National Park, one of the few protected arid zones in northern South America (Venezuela), two exotic plants, Kalanchoe daigremontiana and Stapelia gigantea, have become established. Our goal was to examine what type of relationship existed between these exotics and some biotic (enzymes activities and microbes, fine root mass, and the associated nutrient content) and abiotic (physical-chemical characteristics) soil properties. Soil samples were collected during the dry season from sites at which both exotics have become established and from places inhabited only by native plants. K. daigremontiana grew successfully on soil with greater clay contents for the best supply of Ca. S. gigantea grew in the same soil conditions than the resident plants, but the dense and shallow fine root mass system of this species probably allowed it to exploit a greater upper soil volume that the native plants coexisting with it. Urease activity was highest at the K. daigremontiana site and was related to the high soil organic carbon. Both alkaline phosphatase and fluorescein diacetate hydrolysis were not affected by the presence of exotic plants. These are the first data on the interactions between invasive plants and soil properties in tropical arid lands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Allison SD, Nielsen C, Hughes RF (2006) Elevated enzyme activities in soils under the invasive nitrogen-fixing tree Falcataria moluccana. Soil Biol Biochem 38:1537–1544 doi:10.1016/j.soilbio.2005.11.008

    Article  CAS  Google Scholar 

  • Belnap J, Phillips SL (2001) Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion. Ecol Appl 11:1261–1275 doi:10.1890/1051-0761(2001)011[1261:SBIAUG]2.0.CO;2

    Article  Google Scholar 

  • Blank R, Young JA (2002) Influence of the exotic invasive crucifer, Lepidium latifolium, on soil properties and elemental cycling. Soil Sci 167:821–829 doi:10.1097/00010694-200212000-00006

    Article  CAS  Google Scholar 

  • Brooks ML (2003) Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. J Appl Ecol 40:344–353

    Google Scholar 

  • Carrodus B, Specht R (1965) Factors affecting the relative distribution of Atriplex vesicaria and Kochia sedifolia (chenopodiaceae) in the arid zone of South Australia. Aust J Bot 13:419–433 doi:10.1071/BT9650419

    Article  Google Scholar 

  • Chapuis-Lardy L, Vanderhoeven S, Dassonville L, Koutika S, Meerts P (2006) Effect of the exotic invasive plant Solidago gigantea on soil phosphorus status. Biol Fertil Soils 42:481–489 doi:10.1007/s00374-005-0039-4

    Article  Google Scholar 

  • Cheng X, Luo Y, Chen J, Lin G, Chen J, Li B (2006) Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine island. Soil Biol Biochem 38:3380–3386 doi:10.1016/j.soilbio.2006.05.016

    Article  CAS  Google Scholar 

  • Corstanaje R, Schulin R, Lark RM (2007) Scale-dependent relationships between soil organic carbon and urease activity. Eur J Soil Sci 58:1087–1095 doi:10.1111/j.1365-2389.2007.00902.x

    Article  CAS  Google Scholar 

  • D'Antonio CM (1993) Mechanisms controlling invasion of coastal plant communities by the alien succulent Carpobrotus edulis. Ecology 71:83–95 doi:10.2307/1939503

    Article  Google Scholar 

  • Davis M, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invisibility. J Ecol 88:528–534 doi:10.1046/j.1365-2745.2000.00473.x

    Article  Google Scholar 

  • Day PR (1965) Particle fractionation and particle size analysis. In: Black CA (ed) Methods of soils analysis. Part 1. American Society of Agronomy, Madison, WI, pp 545–567

    Google Scholar 

  • Dick WA, Tabatabai MA (1993) Significance and potencial uses of soil enzymes. In: Blaine Mettin F Jr (ed) Soil microbial ecology. Applications in agriculture and environmental management. Marcel Decker, New York, pp 95–127

    Google Scholar 

  • Dinerstein E, Olson D Graham, D Webster, A Primm, Bookbinder S, Ledec G (1995) Una evaluación del estado de conservación de las eco-regiones terrestres de América Latina y el Caribe. Washington, EEUU: WWF. Banco Mundial

  • Dunbar KR, Facelli JM (1999) The impact of a novel invasive species Orbe variegata (African carrion flowers) on the chenopod shrublands of south Australia. J Arid Environ 41:37–48 doi:10.1006/jare.1998.0471

    Article  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems (N Y, Print) 6:503–523 doi:10.1007/s10021-002-0151-3

    Article  CAS  Google Scholar 

  • Eivazi F, Tabatabai MA (1977) Phosphatases in soils. Soil Biol Biochem 9:167–172 doi:10.1016/0038-0717(77)90070-0

    Article  CAS  Google Scholar 

  • Evans RD, Rimer R, Sperry L, Belnap J (2001) Exotic plant invasion alters nitrogen dynamics in arid grassland. Ecol Appl 11:1301–1310 doi:10.1890/1051-0761(2001)011[1301:EPIAND]2.0.CO;2

    Article  Google Scholar 

  • Green VS, Stott DE, Diack M (2006) Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biol Biochem 38:693–701 doi:10.1016/j.soilbio.2005.06.020

    Article  CAS  Google Scholar 

  • Hannan-Jones MA, Playford J (2002) The biology of Australian weeds 40 Bryophyllum Salisb. Species. Plant Prot Q 17:42–57

    Google Scholar 

  • Kalkhan MA, Stafford EJ, Woodly PJ, Stohlgren TJ (2007) Assesing exotic plant species invasions and associated soil characteristics: a case study in Rocky Mountain national park, Colorado, USA, using the pixel nested plot design. Appl Soil Ecol 35:622–634 doi:10.1016/j.apsoil.2006.09.009

    Article  Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72 doi:10.1007/BF00257924

    Article  CAS  Google Scholar 

  • Kinzel H (1983) Influence of limestone, silicates and soil pH on vegetation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, New series, vol. 12C. Physiological plant ecology III. Springer, Berlin, pp 201–244

    Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Huang WS (2002) Enzyme activities during litter decomposition of two exotic and two native plants species in hardwood forests of New Jersey. Soil Biol Biochem 34:1207–1218 doi:10.1016/S0038-0717(02)00057-3

    Article  CAS  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Häggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35:895–905 doi:10.1016/S0038-0717(03)00120-2

    Article  CAS  Google Scholar 

  • Koutika LS, Vanderhoeven S, Chapuis-Lardy L, Dassonville N, Meerts P (2007) Assessment of changes in soil organic matter after invasion by exotic plant species. Biol Fertil Soils 44:331–341 doi:10.1007/s00374-007-0210-1

    Article  Google Scholar 

  • Kreij C, Leeuwen JL (2001) Growth of pot plants in treated corr dust as compared to peat. Commun Soil Sci Plant Anal 32:2255–2265 doi:10.1081/CSS-120000281

    Article  Google Scholar 

  • LeJeune KD, Suding KN, Seastedt TR (2006) Nutrient availability does not explain invasion and dominance of a mixed grass prairie by the exotic forb Centaurea diffusa Lam. Appl Soil Ecol 32:98–110 doi:10.1016/j.apsoil.2005.01.009

    Article  Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invisibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • Loope LL, Sanchez PG, Tarr PW, Loope WL, Anderson L (1988) Biological invasions of arid land nature reserves. Biol Conserv 44:95–118 doi:10.1016/0006-3207(88)90006-7

    Article  Google Scholar 

  • Meyer AJ, Popp M (1997) Free Ca2+ in tissue saps of calciotrophic CAM plants as determined with Ca2+-selective electrodes. J Exp Bot 48:337–344 doi:10.1093/jxb/48.2.337

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36 doi:10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Cervelli S, Sequi P (1978) Stability and kinetic properties of humus–urease complexes. Soil Biol Biochem 10:143–147 doi:10.1016/0038-0717(78)90085-8

    Article  CAS  Google Scholar 

  • Nannipieri P, Muccini L, Ciardi C (1983) Microbial biomass and enzyme activities: production and persistence. Soil Biol Biochem 15:679–685 doi:10.1016/0038-0717(83)90032-9

    Article  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670 doi:10.1046/j.1351-0754.2003.0556.x

    Article  Google Scholar 

  • Nourbakhsh F, Monreal CM (2004) Effects of soil properties and trace metals on urease activities of calcareous soils. Biol Fertil Soils 40:359–362 doi:10.1007/s00374-004-0786-7

    Article  CAS  Google Scholar 

  • Nozzolillo C (1970) A mineral nutrition experiment with “Bryophyllum daigremontianum”. Bioscience 20:916 doi:10.2307/1295587

    Article  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties, second ed. SSSA, Madison, WI, pp 403–430

    Google Scholar 

  • Rojo M, Carcedo S, Mateos M (1990) Distribution and characterization of phosphatase and organic phosphorus in soil fractions. Soil Biol Biochem 22:169–174 doi:10.1016/0038-0717(90)90082-B

    Article  CAS  Google Scholar 

  • Roscoe R, Vasconcellos CA, Furtini Neto AE, Guedes GAA, Fernandes LA (2000) Urease activity and its relation to soil organic matter, microbial biomass nitrogen and urea-nitrogen assimilation by maize in a Brazilian oxisol under no-tillage and tillage systems. Biol Fertil Soils 32:52–59 doi:10.1007/s003740000213

    Article  CAS  Google Scholar 

  • Schnürer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as measure of total microbial activity in soil and litter. Appl Environ Microbiol 43:1256–1261

    PubMed  Google Scholar 

  • Sicardi M, Garcìa-Prèchac F, Frioni L (2004) Soil microbial indicators sensitive to land use conversion from pastures to commercial Eucalyptus grandis (Hill ex Maiden) plantations in Uruguay. Appl Soil Ecol 27:125–133

    Article  Google Scholar 

  • Stark NM, Jordan CE (1978) Nutrient retention by the root mat of an Amazonian rain forest. Ecology 59:434–437 doi:10.2307/1936571

    Article  CAS  Google Scholar 

  • Statistica (2001) Statistica for windows. StatSoft, Tulsa, OK

    Google Scholar 

  • Suding KN, LeJeune KD, Seastedt T (2004) Competitive impacts and responses of an invasive weed: dependencies on nitrogen and phosphorus availability. Oecologia 141:526–535 doi:10.1007/s00442-004-1678-0

    Article  PubMed  Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307 doi:10.1016/0038-0717(69)90012-1

    Article  CAS  Google Scholar 

  • Thomas GW (1982) Exchangeable cations. In: Page AL, Millar RH, Keeney DR (eds) Methods of soils analysis. Part 1. American Society of Agronomy, Madison, WI, pp 159–166

    Google Scholar 

  • Vanderhoeven S, Dassonville N, Chapuis-Lardy L, Hayez M, Meerts P (2006) Impact of the invasive alien plant Solidago gigantea on primary productivity, plant nutrient content and soil mineral nutrient concentrations. Plant Soil 286:259–268 doi:10.1007/s11104-006-9042-2

    Article  CAS  Google Scholar 

  • Vitousek PM, Walker L, Whiteaker L, Mueller-Dombois D, Matson P (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–204 doi:10.1126/science.238.4828.802

    Article  PubMed  Google Scholar 

  • Walkley A, Black A (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38 doi:10.1097/00010694-193401000-00003

    Article  CAS  Google Scholar 

  • Widmann K, Gebauer G, Rehder H, Ziegler H (1990) Biomass production and nitrogen contents of the CAM plants Kalanchoe daigremontiana and K. tubiflora in cultures with different nitrogen and water supply. Oecologia 82:478–483 doi:10.1007/BF00319789

    Article  Google Scholar 

  • Windham L, Ehrenfeld JG (2003) Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh. Ecol Appl 13:883–897 doi:10.1890/02–5005

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Editor in Chief who provided helpful comments on this manuscript. We would also thank to Maiella Rangel for their technical assistance in the chemical analysis and Cristobal Guape and Epifanio Ortega of the Universidad Inigena de Venezuela who assisted most of the root extraction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemi Chacón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chacón, N., Herrera, I., Flores, S. et al. Chemical, physical, and biochemical soil properties and plant roots as affected by native and exotic plants in Neotropical arid zones. Biol Fertil Soils 45, 321–328 (2009). https://doi.org/10.1007/s00374-008-0342-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0342-y

Keywords

Navigation