Skip to main content
Log in

Changes in microbial community structure in soil as a result of different amounts of nitrogen fertilization

  • Short Communication
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The changes in size, activity and structure of soil microbial community caused by N fertilization were studied in a laboratory incubation experiment. The rates of N fertiliser applied (KNO3) were 0 (control), 100 and 2,000 μg N g−1 soil. Despite no extra C sources added, a high percentage of N was immobilized. Whereas no significant increase of microbial C was revealed during incubation period, microbial growth kinetics as determined by the substrate-induced growth-response method demonstrated a significant decrease in the specific growth rate of microbial community in soil treated with 2,000 μg N g−1 soil. Additionally, a shift in microbial community structure resulting in an increase in fungal biomarkers, mainly in the treatment with 2,000 μg N g−1 soil was visible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Becker-Ritt AB, Martinelli AHS, Mitidieri S, Feder V, Wassermann GE, Santi L et al (2007) Antifungal activity of plant and bacterial ureases. Toxicon 50:971–983 doi:10.1016/j.toxicon.2007.07.008

    Article  PubMed  CAS  Google Scholar 

  • Berntson GM, Aber JD (2000) Fast nitrate immobilization in N saturated temperate forest soils. Soil Biol Biochem 32:151–156 doi:10.1016/S0038-0717(99)00132-7

    Article  CAS  Google Scholar 

  • Blagodatskaya EV, Pampura TV, Dem’yanova EG, Myakshina TN (2006) Effect of lead on growth characteristics of microorganisms in soil and rhizosphere of Dactylis glomerata. Eurasian Soil Sci 39:653–660 doi:10.1134/S106422930606010X

    Article  Google Scholar 

  • Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. FEMS Microbiol Ecol 35:265–278

    CAS  Google Scholar 

  • Bristow AW, Ryden JC, Whitehead DC (1987) The fate at several time intervals of 15N-labelled ammonium nitrate applied to established grass sward. J Soil Sci 38:245–254 doi:10.1111/j.1365-2389.1987.tb02142.x

    Article  CAS  Google Scholar 

  • Colman BP, Fierer N, Schimel JP (2007) Abiotic nitrate incorporation in soil: is it real? Biogeochemistry 84:161–169 doi:10.1007/s10533-007-9111-5

    Article  Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176 doi:10.1016/S0038-0717(02)00251-1

    Article  CAS  Google Scholar 

  • Fouchard S, Abdellaoui-Maane Z, Boulanger A, Llopiz P, Neunlist S (2005) Influence of growth conditions on Pseudomonas fluorescens strains: a link between metabolite production and the PLFA profile. FEMS Microbiol Lett 251:211–218 doi:10.1016/j.femsle.2005.08.003

    Article  PubMed  CAS  Google Scholar 

  • Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65 doi:10.1007/BF00384433

    Article  Google Scholar 

  • Gattinger A, Guenthner A, Schloter M, Munch JC (2002) Characterization of Archaea in soils by polar lipid analysis. Acta Biotechnol 23:133–139

    Google Scholar 

  • Guillot A, Obis D, Mistou MY (2000) Fatty acid membrane composition and activation of glycine–betaine transport in Lactococcus lactis subjected to osmotic stress. Int J Food Microbiol 55:47–51 doi:10.1016/S0168-1605(00)00193-8

    Article  PubMed  CAS  Google Scholar 

  • Hadas A, Sofer M, Molina JAE, Barak P, Clapp CE (1992) Assimilation of nitrogen by soil microbial population: NH4 versus organic N. Soil Biol Biochem 24:137–143 doi:10.1016/0038-0717(92)90269-4

    Article  CAS  Google Scholar 

  • Iyyemperumal K, Shi W (2007) Soil microbial community composition and structure: residual effects of contrasting N fertilization of swine lagoon effluent versus ammonium nitrate. Plant Soil 292:233–242 doi:10.1007/s11104-007-9219-3

    Article  CAS  Google Scholar 

  • Jackson L, Schimel J, Firestone M (1989) Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biol Biochem 21:409–415 doi:10.1016/0038-0717(89)90152-1

    Article  Google Scholar 

  • Kaiser E-A, Müller T, Joergensen RG, Insam H, Heinemezer O (1992) Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. Soil Biol Biochem 24:675–683 doi:10.1016/0038-0717(92)90046-Z

    Article  CAS  Google Scholar 

  • Kieft TL, Soroker E, Firestone MK (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19:119–126 doi:10.1016/0038-0717(87)90070-8

    Article  Google Scholar 

  • Panikov NS, Sizova MV (1996) A kinetic method for estimating the biomass of microbial functional groups in soil. J Microbiol Methods 24:219–230 doi:10.1016/0167-7012(95)00074-7

    Article  Google Scholar 

  • Recous S, Mary B, Faurie G (1990) Microbial immobilization of ammonium and nitrate in cultivated soils. Soil Biol Biochem 22:913–922 doi:10.1016/0038-0717(90)90129-N

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707 doi:10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Wiemken V, Laczko E, Ineichen K, Boller T (2001) Effects of elevated carbon dioxide and nitrogen fertilization on mycorrhizal fine roots and the soil microbial community in beech-spruce ecosystems on siliceous and calcareous soil. Microb Ecol 42:126–135

    PubMed  CAS  Google Scholar 

  • Yevdokimov IV, Blagodatsky SA (1993) Nitrogen immobilization and remineralization by microorganisms and nitrogen uptake by plants: interactions and rate calculations. Geomicrobiol J 11:185–193

    Article  CAS  Google Scholar 

  • Yevdokimov IV, Saha S, Blagodatsky SA, Kudeyarov VN (2005) Nitrogen immobilization by soil microorganisms depending on nitrogen application rates. Eurasian Soil Sci 38:516–523

    Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129 doi:10.1007/s003740050533

    Article  CAS  Google Scholar 

  • Zelles L, Bai QY (1993) Fractionation of fatty acids derived from soil lipids by soil phase extraction and their quantitative analysis by GC–MS. Soil Biol Biochem 25:130–134 doi:10.1016/0038-0717(93)90075-M

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Alexander von Humboldt Foundation, Russian Foundation for Basic Researches, and Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Yevdokimov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yevdokimov, I., Gattinger, A., Buegger, F. et al. Changes in microbial community structure in soil as a result of different amounts of nitrogen fertilization. Biol Fertil Soils 44, 1103–1106 (2008). https://doi.org/10.1007/s00374-008-0315-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0315-1

Keywords

Navigation