Skip to main content
Log in

Fingerprinting methods to approach multitrophic interactions among microflora and microfauna communities in soil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The soil functioning and the response of the biota to external perturbations such as organic input are based on multitrophic interactions among a wide range of organisms. However, the various components of the soil microflora and microfauna are rarely addressed in ecological studies. We have developed a molecular approach based on terminal restriction fragment length polymorphism (T-RFLP) analysis to assess the community structures of protozoa and nematodes, together with bacteria and fungi that share the same soil environment. Two soils were characterized by a specific fingerprint for each of the four groups of organisms, showing the potential of all T-RFLP procedures to differentiate the community structures. The response of the soil biota to organic inputs was addressed using T-RFLP fingerprints together with physiological profiles of bacteria communities and global microbial activities and densities. Although the impact of compost or manure on the soil biota was only slightly noticeable from the global parameters measured, it was obvious from the community level analyses. However, the different components of the soil biota were altered to various extents, depending on the group of organisms and the soil–organic matter combination. The potential of the T-RFLP strategy to analyze simultaneously different biotic groups from the same soil DNA extract will facilitate the more systematic integration of eukaryotic organisms in ecological studies to investigate multitrophic interactions among the microflora and microfauna in relation with soil processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779

    Article  PubMed  CAS  Google Scholar 

  • Anderson JPE, Domsch KH (1973) Quantification of fungal and bacterial contribution to soil respiration. Arch Mikrobiol 93:113–127

    Article  CAS  Google Scholar 

  • Avis PG, Dickie IA, Mueller GM (2006) A ‘dirty’ business: testing the limitations of terminal restriction fragment length polymorphism (TRFLP) analysis of soil fungi. Mol Ecol 15:873–882

    Article  PubMed  CAS  Google Scholar 

  • Blanc C, Sy M, Djigal D, Brauman A, Normand P, Villenave C (2006) Nutrition on bacteria by bacterial-feeding nematodes and consequences on the structure of soil bacterial community. Eur J Soil Biol 42:S70–S78

    Article  CAS  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631

    Article  Google Scholar 

  • Borneman J, Hartin RJ (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66:4356–4360

    Article  PubMed  CAS  Google Scholar 

  • Braker G, Ayala-Del-Rio HL, Devol AH, Fesefeldt A, Tiedje JM (2001) Community structure of denitrifiers, Bacteria, and Archaea along redox gradients in Pacific Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes. Appl Environ Microbiol 67:1893–1901

    Article  PubMed  CAS  Google Scholar 

  • Cadet P, Berry SD, Leslie GW, Spaull VW (2007) Management of nematodes and a stalk borer by increasing within-field sugarcane cultivar diversity. Plant Pathol 56:526–535

    Article  Google Scholar 

  • Clarholm M (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17:181–187

    Article  CAS  Google Scholar 

  • Coleman DC, Whitman WB (2005) Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia 49:479–497

    Article  CAS  Google Scholar 

  • Davet P (2004) Microbial ecology of the soil and plant growth. Science Publisher, USA

    Google Scholar 

  • Deacon LJ, Pryce-Miller EJ, Frankland JC, Bainbridge BW, Moore PD, Robinson CH (2006) Diversity and function of decomposer fungi from a grassland soil. Soil Biol Biochem 38:7–20

    Article  CAS  Google Scholar 

  • Edel-Hermann V, Dreumont C, Pérez-Piquerez A, Steinberg C (2004) Terminal restriction fragment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils. FEMS Microbiol Ecol 47:397–404

    Article  CAS  Google Scholar 

  • Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal DNA. Nucleic Acids Res 17:7843–7853

    Article  PubMed  CAS  Google Scholar 

  • Elliott ET, Anderson RV, Coleman DC, Cole CV (1980) Habitable pore space and microbial trophic interactions. Oikos 35:327–335

    Article  Google Scholar 

  • Finlay BJ, Fenchel T (2001) Protozoan community structure in a fractal soil environment. Protist 152:203–218

    Article  PubMed  CAS  Google Scholar 

  • Frankland JC (1998) Fungal succession—unravelling the unpredictable. Mycol Res 102:1–15

    Article  Google Scholar 

  • Friberg H, Lagerlof J, Ramert B (2005) Influence of soil fauna on fungal plant pathogens in agricultural and horticultural systems. Biocontrol Sci Technol 15:641–658

    Article  Google Scholar 

  • Garland JL (1996) Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol Biochem 28:213–221

    Article  CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Khironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  PubMed  CAS  Google Scholar 

  • Ladd JN, Foster RC, Nannipieri P, Oades JM (1996) Soil structure and biological activity. In: Stotzky G, Bollag J-M (eds) Soil biochemistry, vol 9. Marcel Dekker, New York, pp 23–78

    Google Scholar 

  • Liu W-T, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    PubMed  CAS  Google Scholar 

  • Lukow T, Dunfield PF, Liesack W (2000) Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol Ecol 32:241–247

    Article  CAS  Google Scholar 

  • Marwati U, Funasaka K, Toyota K, Katayama A (2003) Functional characterization of soil microbial communities based on the utilization pattern of aromatic compounds. Soil Sci Plant Nut 49:143–147

    Google Scholar 

  • Mougel C, Thioulouse J, Perriere G, Nesme X (2002) A mathematical method for determining genome divergence and species delineation using AFLP. Int J Syst Evol Microbiol 52:573–586

    PubMed  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Pérez-Piqueres A, Edel-Hermann V, Alabouvette C, Steinberg C (2006) Response of soil microbial communities to compost amendments. Soil Biol Biochem 38:460–470

    Article  Google Scholar 

  • Ranjard L, Poly F, Nazaret S (2000) Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Res Microbiol 151:167–177

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen LD, Ekelund F, Hansen LH, Sorensen SJ, Johnsen K (2001) Group-specific PCR primers to amplify 24S alpha-subunit rRNA genes from Kinetoplastida (Protozoa) used in denaturing gradient gel electrophoresis. Microb Ecol 42:109–115

    PubMed  CAS  Google Scholar 

  • Regensbogenova M, Pristas P, Javorsky P, Moon-van der Staay SY, van der Staay GWM, Hackstein JHP, Newbold CJ, McEwan NR (2004) Assessment of ciliates in the sheep rumen by DGGE. Lett Appl Microbiol 39:144–147

    Article  PubMed  CAS  Google Scholar 

  • Ros M, Klammer S, Knapp B, Aichberger K, Insam H (2006) Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use Manag 22:209–218

    Article  Google Scholar 

  • Ros M, Goberna M, Pascual JA, Klammer S, Insam H (2008) 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. J Microbiol Meth 72:221–226

    Article  CAS  Google Scholar 

  • Schloter M, Dilly O, Munch JC (2003) Indicators for evaluating soil quality. Agric Ecosyst Environ 98:255–262

    Article  Google Scholar 

  • Smalla K, Wachtendorf U, Heuer H, Liu WT, Forney L (1998) Analysis of BIOLOG GN substrate utilization patterns by microbial communities. Appl Environ Microbiol 64:1220–1225

    PubMed  CAS  Google Scholar 

  • Smith SN, Pugh GJF (1979) Evaluation of dehydrogenase as a suitable indicator of soil microflora activity. Enz Microb Technol 1:279–281

    Article  CAS  Google Scholar 

  • Thiet RK, Frey SD, Six J (2006) Do growth yield efficiencies differ between soil microbial communities differing in fungal: bacterial ratios? Reality check and methodological issues. Soil Biol Biochem 38:837–844

    Article  CAS  Google Scholar 

  • Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83

    Article  Google Scholar 

  • Waite IS, O’Donnell AG, Harrison A, Davies JT, Colvan SR, Ekschmitt K, Dogan H, Wolters V, Bongers T, Bongers M, Bakonyi G, Nagy P, Papatheodorou EM, Stamou GP, Bostrom S (2003) Design and evaluation of nematode 18S rDNA primers for PCR and denaturing gradient gel electrophoresis (DGGE) of soil community DNA. Soil Biol Biochem 35:1165–1173

    Article  CAS  Google Scholar 

  • Yang YJ, Dungan RS, Ibekwe AM, Valenzuela-Solano C, Crohn DM, Crowley DE (2003) Effect of organic mulches on soil bacterial communities one year after application. Biol Fertil Soils 38:273–281

    Article  CAS  Google Scholar 

  • Yeates GW (2003) Nematodes as soil indicators: functional and biodiversity aspects. Biol Fertil Soils 37:199–210

    Google Scholar 

  • Zelenev VV, van Bruggen AHC, Leffelaar PA, Bloem J, Semenov AM (2006) Oscillating dynamics of bacterial populations and their predators in response to fresh organic matter added to soil: The simulation model ‘BACWAVE-WEB’. Soil Biol Biochem 38:1690–1711

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the E.U. project RECOVEG: QLTR-01458. We thank L. Rasmussen and I. Waite for providing protozoan and nematode DNA, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Edel-Hermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edel-Hermann, V., Gautheron, N., Alabouvette, C. et al. Fingerprinting methods to approach multitrophic interactions among microflora and microfauna communities in soil. Biol Fertil Soils 44, 975–984 (2008). https://doi.org/10.1007/s00374-008-0287-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0287-1

Keywords

Navigation