Skip to main content

Advertisement

Log in

Low levels of ferredoxin, ATP and leghemoglobin contribute to limited N2 fixation of peas (Pisum sativum L.) and alfalfa (Medicago sativa L.) under S deficiency conditions

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Sulphur (S) has become a major limiting factor for plant production in industrial as well as in remote industrial rural areas. Limitation of S can reduce legume N2 fixation by affecting nodule development and function. In pot experiments with pea (Pisum sativum L.) and alfalfa (Medicago sativa L.), we investigated the influence of S on growth, ferredoxin, ATP and leghemoglobin concentrations. Addition of 200 mg S pot−1 increased yield of shoots, roots and nodules of both plant species significantly. However, the influence of S on nodule yield formation was most pronounced. Pea and alfalfa roots were found to have higher S concentrations than shoots and being up to 2.9 times the S concentration in the shoots of peas under S-sufficient conditions. Sulphur addition also increased N2 fixation significantly. The ferredoxin concentration in bacteroids of root nodules of pea was increased significantly by S only 10 weeks after planting and in bacteroids of root nodules of alfalfa 10 and 17 weeks after planting, while on per pot base the amounts of ferredoxin were higher throughout the experimental period of time. The ATP concentration of bacteroids of root nodules of both plant species as well as of mitochondria of root nodules of pea were significantly higher with optimum S supply. The effects of S deficiency on N2 fixation are likely to be caused by the shortage of ferredoxin and ATP. The amount of leghemoglobin was reduced in comparison to nodules of the S-sufficient plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anonymous (2006) SAS-Makro Box-cox-transformation. Universität Hohenheim, Institut für Bioinformatik. http://www.uni-hohenheim.de/bioinformatik/beratung/toolsmacros/sasmacros/boxcox_macro.sas

  • Bergersen FJ (1991) Physiological control of nitrogenase and uptake hydrogenase. In: Dilworth MJ, Glenn AR (eds) Biology and biochemistry of nitrogen fixation. Elsevier, Amsterdam, NL, pp 76–102

    Google Scholar 

  • Carter KR, Rawlings J, Orme-Johnson WH, Becker RR, Evans HJ (1980) Purification and characterization of ferredoxin from Rhizobium japonicum bacteroids. J Biol Chem 255:4213–4223

    PubMed  CAS  Google Scholar 

  • Ching TM, Hedtke S, Russell SA, Evans HJ (1975) Energy state and dinitrogen fixation in soybean nodules of dark-grown plants. Plant Physiol 55:796–798

    PubMed  CAS  Google Scholar 

  • Dalton DA, Joyner SL, Becana M, Iturbe-Ormaetxe I, Chatfield JM (1998) Antioxidant defenses in the peripheral cell layers of legume root nodules. Plant Physiol 116:37–43

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ (1989) Recovery of spinach leaves from sulphate and phosphate deficiency. J Plant Physiol 134:551–557

    CAS  Google Scholar 

  • Duke SH, Reisenauer H (1986) Roles and requirements of sulphur in plant nutrition. In: Tabatabai MA (ed) Sulfur in agriculture. Agronomy Monograph no. 27. American Society of Agronomy, Madison, Wisconsin, USA, pp 123–168

    Google Scholar 

  • Fox RL, Olson RA, Rhoades HF (1964) Evaluating the sulfur status of soils by plants and soil tests. Soil Sci Soc Am Proc 28:243–246

    Article  Google Scholar 

  • Fukuyama K (2004) Structure and function of plant-type ferredoxin. Photosynth Res 81:289–301

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez EM, Galves L, Royuela M, Aparicio-Tejo PM, Arrese-Igor C (2001) Insights into the regulation of nitrogen fixation in pea nodules: lessons from drought, abscisic acid and increased photoassimilate availability. Agronomy 21:607–613

    Article  Google Scholar 

  • Gordon AJ, Minchin FR, Skot L, James CL (1997) Stress-induced declines in soybean N2 fixation are related to nodule sucrose synthase activity. Plant Physiol 114:937–946

    PubMed  CAS  Google Scholar 

  • Hrivna L, Richter R, Losak T (2001) The effect of the content of water-soluble sulphur in the soil on the utilisation of nitrogen and on the yields and quality of winter rape. Rostl Vyroba 47:18–22

    CAS  Google Scholar 

  • Hrivna L, Richter R, Losak T, Hlusek J (2002) Effect of increasing doses of nitrogen and sulphur on chemical composition of plants, yields and seed quality in winter rape. Rostl Vyroba 48:1–6

    CAS  Google Scholar 

  • Johnson MD, Wang X (1996) Differentially expressed forms of 1-L-myo-inositol-1-phosphate synthase (EC) in Phaseolus vulgaris. J Biol Chem 271:17215–17218

    Article  PubMed  CAS  Google Scholar 

  • Kawashima K, Suganuma N, Tamaoki M, Kouchi H (2001) Two types of pea leghemoglobin genes showing different O2-binding affinities and distinct patterns of spatial expression in nodules. Plant Physiol 125:641–651

    Article  PubMed  CAS  Google Scholar 

  • Lange A (1998) Einfluß der Schwefel-Versorgung auf die biologische Stickstoff-Fixierung von Leguminosen. Ph.D. thesis, University of Bonn, Germany

  • Lodwig EM, Hosie AHF, Bourdès A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS (2003) Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature 422:722–726

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Matamoros MA, Baird LM, Escuredo PR, Dalton D, Minchin FR, Iturbe-Ormaetxe I, Rubio MC, Moran JF, Gordon AJ, Becana M (1999) Stress-induced legume root nodule senescence. Physiological, biochemical and structural alterations. Plant Physiol 121:97–111

    Article  PubMed  CAS  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers

  • Mengel K, Haghparast M, Koch K (1974) The effect of potassium on the fixation of molecular nitrogen by root nodules of V. faba. Plant Physiol 54:535–538

    Article  PubMed  CAS  Google Scholar 

  • Mortensen LE, Thornley RNF (1979) Structure and function of nitrogenase. Ann Rev Biochem 48:387–418

    Article  Google Scholar 

  • Murphy MD, Brogan JC, Noonan DG (1983) Sulphur fertilization of pasture improves cattle performance. Sulphur Agric 7:2–6

    Google Scholar 

  • Neuburger M, Journet E-P, Bligny R, Carde J-P, Douce R (1982) Purification of plant mitochondria by isopycnic centrifugation in density gradients of Percoll. Arch Biochem Biophys 217:312–323

    Article  PubMed  CAS  Google Scholar 

  • Pacyna S, Schulz M, Scherer HW (2006) Influence of sulphur supply on glucose and ATP concentrations of inoculated broad beans (V. faba minor L.). Biol Fertil Soils 42:324–329

    Article  CAS  Google Scholar 

  • Price GD, Day DA, Gresshoff PM (1987) Rapid isolation of intact peribacteroid envelopes from soybean nodules and demonstration of selective permeability to metabolites. J Plant Physiol 130:157–164

    CAS  Google Scholar 

  • Ryden JC (1984) Fertilizers for grassland. Chem Ind 18:652–657

    Google Scholar 

  • Scherer HW, Lange A (1996) N2-fixation and growth of legumes as affected by sulphur fertilization. Biol Fertil Soils 23:449–453

    Article  CAS  Google Scholar 

  • Scherer HW, Pacyna S, Manthey N, Schulz M (2006) Sulphur supply to peas (Pisum sativum L.) influences symbiotic N2 fixation. Plant Soil Environ 52:72–77

    CAS  Google Scholar 

  • Schwinghamer EA (1980) A method for improved lysis of some gram negative bacteria. FEMS Microbiol Lett 7:157–162

    Article  CAS  Google Scholar 

  • Scott NM, Watson ME, Caldwell KS, Inkson RHE (1983) Response of grassland to the application of S at two sites in north-east Scotland. J Sci Food Agric 3:357–361

    Article  Google Scholar 

  • Simonsen ACW, Rosendahl L (1999) Origin of de novo synthesized proteins in the different compartments of pea-Rhizobium sp. symbiosomes. Mol. Plant-Microbe Interact 12:319–327

    Article  CAS  Google Scholar 

  • Singh P, Raj B (1988) Sulphur fertilization in relation to yield and trend of production of leghemoglobin in the nodules of pea (Pisum sativum var. Arvense). Ann Agric Res 9:13–19

    Google Scholar 

  • Sunarpi S, Anderson JW (1997) Effect of nitrogen nutrition on remobilization of protein sulfur in the leaves of vegetative soybean and associated changes in soluble sulfur metabolites. Plant Physiol 115:1671–1680

    PubMed  CAS  Google Scholar 

  • Vance CP, Gantt JS (1992) Control of nitrogen and carbon metabolism in root nodules. Physiol Plant 85:266–274

    Article  CAS  Google Scholar 

  • Vance CP, Heichel GH (1991) Carbon in N2 fixation: limitation or exquisite adaption. Ann Rev Plant Physiol Plant Mol Biol 42:373–392

    Article  CAS  Google Scholar 

  • Vikman PA, Vessey JK (1993) Gas-exchange activity, carbohydrate status and protein turnover in root nodule subpopulations of field pea (Pisum sativum L.cv Century). Plant Siol 151:31–38

    Article  CAS  Google Scholar 

  • Wilson DO, Reisenauer HM (1963) Determination of leghemoglobin in legume nodules. Anal Biochem 6:27–30

    Article  CAS  Google Scholar 

  • Wooding FJ, Paulsen GM, Murphy LS (1970) Response of nodulated and nonnodulated soybean seedlings to sulfur nutrition. Agron J 62:277–280

    Article  CAS  Google Scholar 

  • Yoch D (1973) Purification and characterization of ferredoxin-nicotinamide adenine dinucleotide phosphate reductase from a nitrogen-fixing bacterium. J Bacteriol 118:384–391

    Google Scholar 

  • Zhao FJ, Wood AP, McGrath SP (1999) Effects of sulphur nutrition on growth and nitrogen fixation of pea (P. sativum L.). Plant Soil 212:209–219

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are much indebted to the Deutsche Forschungsgemeinschaft (DFG) for financial support and Fa. Jost for providing Rhizobium bacteria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich W. Scherer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherer, H.W., Pacyna, S., Spoth, K.R. et al. Low levels of ferredoxin, ATP and leghemoglobin contribute to limited N2 fixation of peas (Pisum sativum L.) and alfalfa (Medicago sativa L.) under S deficiency conditions. Biol Fertil Soils 44, 909–916 (2008). https://doi.org/10.1007/s00374-008-0273-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0273-7

Keywords

Navigation