Skip to main content

Advertisement

Log in

Influence of pH and calcium on the growth, polysaccharide production and symbiotic association of Sinorhizobium meliloti SEMIA 116 with alfalfa roots

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The Sinorhizobium -legume interaction is sensitive to a number of environmental factors, soil acidity being one of the most important. In the typic Hapludoll soil of the central-southern region of Córdoba (Argentine) it was found that the nodulation of alfalfa ( Medicago sativa L.) roots was impaired with a reduction in shoot dry matter under conditions of soil acidity (pH 5.5) Our results showed that the addition of lime as dolomitic limestone at a concentration of 1 t ha-1 to acid soil caused a significant increase in the nodulation of alfalfa roots inoculated with the strain Sinorhizobium meliloti SEMIA 116 (recommended inoculum for alfalfa) in the greenhouse experiments. The success of the lime treatment may be related not only to an increase in the pH values but also to an increase in the Ca concentration, improving the growth of S. meliloti and its nodulation ability under acidic conditions. In this study, we also demonstrated an increment in the bacterial growth rate as well as in the production of exopolysaccharides and lipopolysaccharides under low pH (5.5) and a high Ca concentration (5 mM) in the culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Appanna V (1988) Alteration of exopolysaccharide composition in Rhizobium meliloti JJ-1 exposed to manganese. FEMS Microbiol Lett 50:141–144

    Article  CAS  Google Scholar 

  • Balagué L, Del Papa M, Pistorio M, Perticari A, Lagares A (2000) Persistence and competitiveness of OR91-like rhizobia and Sinorhizobium meliloti (SME) strains in an acidic soil of Argentina. In: Pedrosa F, Hungria M, Yates MG, Newton WEl (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer, Dordrecht, pp 477–478

  • Ballen KG, Graham PH, Jones RK, Bowers JH (1998) Acidity and calcium interaction affecting cell envelope stability in Rhizobium. Can J Microbiol 44:582–587

    Article  CAS  Google Scholar 

  • Bhat U, Carlson R (1992) Chemical characterization of pH-dependent structural epitopes of lipopolysaccharides from Rhizobium leguminosarum biovar phaseoli. J Bacteriol 174:2230–2235

    CAS  PubMed  Google Scholar 

  • Bowra B, Dilworth M (1981) Motility and chemotaxis towards sugars in Rhizobium leguminosarum. J Gen Microbiol 126:231–235

    Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Regular Kjeldahl method. In: Page AL (ed) Methods of soil analysis. Part 2. Chemical and microbiological properties, 2nd edn. American Society of Agronomy, Soil Science Society of America, Madison, Wis., pp 595–624

  • Brown C, Dilworth M (1975) Ammonia assimilation by Rhizobium cultures and bacteroids. J Gen Microbiol 86:39–48

    CAS  PubMed  Google Scholar 

  • Dilworth M, Rynne F, Castelli J, Vivas-Marfisi A, Glenn A (1999) Survival and exopolysaccharide production in Sinorhizobium meliloti WSM419 are affected by calcium and low pH. Microbiology 145:1585–1593

    CAS  PubMed  Google Scholar 

  • Dische Z (1962) General color reactions. Methods Carbohydr Chem 1:478–492

    CAS  Google Scholar 

  • Frausto da Silva J, Williams R (1993) The biological chemistry of elements: the inorganic chemistry of life. Clarendon Press, Oxford

    Google Scholar 

  • Graham P (1992) Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38:475–484

    CAS  Google Scholar 

  • Hampp E, Berardo M, Moreno I (1997) Estado físico-químico de hapludoles y haplustoles típicos bajo cultivo de alfalfa ( Medicago sativa L.) de la región centro sur de Córdoba. In: UNRC (ed) IV Jornadas de ciencia y tecnología de la Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto. Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina, pp 144–146

  • Hebbar K, Guenniot Heyraud A, Colin-Morel P, Heulin T, Balandreau J, Rinaudo M (1992) Characterization of exopolysaccharides produced by rhizobacteria. Appl Microbiol Biotechnol 38:248–253

    CAS  Google Scholar 

  • Hijano EH, Basigalup DH (1995) El cultivo de la alfalfa en la República Argentina. In: Hijano E, Navarro A (eds) La alfalfa en la Argentina. INTA, San Juan, Argentina, p 15

  • Hohn M, Röhrig H, Schmidt J, Walden R, Schell J (1997) Cell signalling by oligosaccharides. Trends Plant Sci 2:111–115

    Article  Google Scholar 

  • Howieson J, Robson A, Abbott L (1992) Calcium modifies pH effects on acid-tolerant and acid-sensitive strains of Rhizobium meliloti. Aust J Agric Res 43:765–772

    CAS  Google Scholar 

  • Jackson ML (1964) Extracción de los cationes canjeables del suelo mediante acetato de amonio a pH 7. In: Análisis quimico de suelos. Omega, Barcelona, pp 91–122

  • Keyser H, Munns D (1979) Effects of calcium, manganese, and aluminium on growth of rhizobia in acid media. Soil Sci Soc Am J 43:500–503

    CAS  Google Scholar 

  • Macció D, Fabra A, Castro S (2002) Acidity and calcium interaction affect the growth of Bradyrhizobium sp and the attachment to peanut roots. Soil Biol Biochem 34:177–184

    Google Scholar 

  • Malpassi R, Hampp E, Bianco C, Basconsuelo S, Grosso M, Kraus T (1999) Anatomía de raíces de Arachis hypogaea L. en parcelas encaladas Rev UNRC 19:19–26

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

  • McLean EO (1982) Soil pH and lime requirement. In: Page AL (ed) Methods of soil analysis. Part 2. Chemical and microbiological properties, 2nd edn. American Society of Agronomy, Soil Science Society of America , Madison, Wis., pp 199–224

  • Michelena R, Irurtia C, Vavruska F, Mon R, Pittaluga A (1989) Degradación de suelos en el norte de la región pampeana. Publicación técnica INTA-Argentina No.  6. INTA, Castelar, Argentina

  • Munns D (1968) Nodulation of Medicago sativa in solution culture. Acid-sensitive steps. Plant Soil 28:129–146

    Google Scholar 

  • Munns D (1970) Nodulation of Medicago sativa in solution culture. Calcium and pH requirements during infection. Plant Soil 32:90–102

    CAS  Google Scholar 

  • Nelson BW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL (ed) Methods of soil analysis. Part 2. Chemical and microbiological properties, 2nd edn. American Society of Agronomy, Soil Science Society of America, Madison, Wis., pp 539–577

  • O'Hara G, Goss T, Dilworth M, Glenn A (1989) Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 55:1870–1876

    CAS  Google Scholar 

  • Raychaudhuri M, Kumar K, Raychaudhuri S (1997) Lime- Rhizobium interaction on soybean in Kanhaplohumult of Manipur hills. J Ind Soc Soil Sci 45:739–742

    Google Scholar 

  • Reeve W, Tiwari R, Dilworth M, Glenn A (1993) Calcium affects the growth and survival of Rhizobium meliloti. Soil Biol Biochem 25:581–586

    Google Scholar 

  • Rodriguez Cáceres E, Laballos N, Vernengo E, Carletti S, Fliess E (1993) Estudio comparativo de dos métodos de encalado y su efecto sobre la productividad de alfalfa. Actas XIV Congr Argent Ciencia Suelo, XIV:4–5

  • Skorupska A, Lorkiewicz Z (1985) Role of non-carbohydrate substitutions of Rhizobium exopolysaccharide in nodulation process. Arch Microbiol 143:307–310

    CAS  Google Scholar 

  • Taurian T, Castro S, Fabra A (1998) Physiological response of two peanut rhizobia strains to acid pH. Symbiosis 24:327–336

    CAS  Google Scholar 

  • Tiwari R, Reeve W, Glenn A (1992) Mutations conferring acid sensitivity in the acid-tolerant strains Rhizobium meliloti WSM419 and Rhizobium leguminosarum biovar viciae WSM710. FEMS Microbiol Lett 100:107–112

    Article  CAS  Google Scholar 

  • Vance C (1983) Rhizobium infection and nodulation: a beneficial plant disease? Annu Rev Microbiol 37:399–403

    Google Scholar 

  • Vincent J (1962) Influence of calcium and magnesium on the growth of Rhizobium. J Gen Microbiol 28:653–663

    CAS  Google Scholar 

  • Vincent J (1970) A manual for the practical study of root nodule bacteria. IBP handbook no. 15. Blackwell, Oxford

  • Watkin E, O'Hara G, Glenn A (1997) Calcium and acid stress interact to affect the growth of Rhizobium leguminosarum bv. trifolii. Soil Biol Biochem 29:1427–1432

    Article  CAS  Google Scholar 

  • Westphal O, Jann K (1965) Bacterial lipopolysaccharides in Rhizobium leguminosarum. In: Whister R (ed) Methods in carbohydrate chemistry, vol 5. Academic Press, New York, pp 83–89

  • Whitfield C, Valvano M (1993) Biosynthesis and expression of cell-surface polysaccharides in Gram-negative bacteria. Adv Microbial Physiol 35:135–246

    CAS  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto, Consejo de Investigaciones Científicas y Tecnológicas de la Provincia de Córdoba and Agencia Nacional de Promoción Científica y Tecnológica Argentina. Lime was generously provided by FGH (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delavechia, C., Hampp, E., Fabra, A. et al. Influence of pH and calcium on the growth, polysaccharide production and symbiotic association of Sinorhizobium meliloti SEMIA 116 with alfalfa roots. Biol Fertil Soils 38, 110–114 (2003). https://doi.org/10.1007/s00374-003-0627-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-003-0627-0

Keywords

Navigation