Skip to main content
Log in

The Generalized Turán Number of Spanning Linear Forests

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let \({\mathcal{F}}\) be a family of graphs. A graph G is called \({\mathcal{F}}\)-free if for any \(F\in {\mathcal{F}}\), there is no subgraph of G isomorphic to F. Given a graph T and a family of graphs \({\mathcal{F}}\), the generalized Turán number of \({\mathcal{F}}\) is the maximum number of copies of T in an \({\mathcal{F}}\)-free graph on n vertices, denoted by \(ex(n,T,{\mathcal{F}})\). A linear forest is a graph whose connected components are all paths or isolated vertices. Let \({\mathcal{L}}_{n,k}\) be the family of all linear forests of order n with k edges and \(K^*_{s,t}\) be a graph obtained from \(K_{s,t}\) by substituting the part of size s with a clique of order s. In this paper, we determine the exact values of \(ex(n,K_s,{\mathcal{L}}_{n,k})\) and \(ex(n,K^*_{s,t},{\mathcal{L}}_{n,k})\). Also, we study the case of this problem when the “host graph” is bipartite. Denote by \(ex_{bip}(n,T,{\mathcal{F}})\) the maximum possible number of copies of T in an \({\mathcal{F}}\)-free bipartite graph with each part of size n. We determine the exact value of \(ex_{bip}(n,K_{s,t},{\mathcal{L}}_{n,k})\). Our proof is mainly based on the shifting method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N., Shikhelman, C.: Many \(T\) copies in \(H\)-free graphs. J. Combin. Theory Ser. B 121, 146–172 (2016)

    Article  MathSciNet  Google Scholar 

  2. Erdős, P., Gallai, T.: On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hung. 10, 337–356 (1959)

    Article  MathSciNet  Google Scholar 

  3. Füredi, Z., Simonovits, M.: The history of degenerate (bipartite) extremal graph problems. In: Lovász, L., Ruzsa, I.Z., Sós, V.T. (eds.) Erdős Centennial, Bolyai Society Mathematical Studies, vol. 25, p. 730. Springer, Berlin (2013)

    Chapter  Google Scholar 

  4. Gerbner, D., Győri, E., Methuku, A., Vizer, M.: Generalized Turán numbers for even cycles. Acta Math. Univ. Comen. 88, 723–728 (2019)

    MATH  Google Scholar 

  5. Gerbner, D., Győri, E., Methuku, A., Vizer, M.: Generalized Turán problems for even cycles. J. Combin. Theory Ser. B 145, 169–213 (2020)

    Article  MathSciNet  Google Scholar 

  6. Gerbner, D., Methuku, A., Vizer, M.: Generalized Turán problems for disjoint copies of graphs. Discrete Math. 342, 3130–3141 (2019)

    Article  MathSciNet  Google Scholar 

  7. Gerbner, D., Palmer, C.: Counting copies of a fixed subgraph in \(F\)-free graphs. Eur. J. Combin. 82, 103001 (2019)

    Article  MathSciNet  Google Scholar 

  8. Gerbner, D., Palmer, C.: Some exact results for generalized Turán numbers. arXiv:2006.03756v1 (2020)

  9. Gishboliner, L., Shapira, A.: A generalized Turán problem and its applications. Int. Math. Res. Not. IMRN 11, 3417–3452 (2020)

    Article  Google Scholar 

  10. Győri, E., Li, H.: The maximum number of triangles in \(C_{2k+1}\)-free graph. Combin. Probab. Comput. 21, 187–191 (2012)

    Article  MathSciNet  Google Scholar 

  11. Kelmans, A.K.: On graphs with randomly deleted edges. Acta. Math. Acad. Sci. Hung. 37, 77–88 (1981)

    Article  MathSciNet  Google Scholar 

  12. Lan, Y., Shi, Y.: Palnar Turán numbers of short paths. Graphs Combin. 35(5), 1035–1049 (2019)

    Article  MathSciNet  Google Scholar 

  13. Lovász, L.: Combinatorial Problems and Exercises. Akadémiai Kiadó/North-Holland, Budapest (1979)

    MATH  Google Scholar 

  14. Luo, R.: The maximum number of cliques in graphs without long cycles. J. Combin. Theory Ser. B 128, 219–226 (2018)

    Article  MathSciNet  Google Scholar 

  15. Ma, J., Qiu, Y.: Some sharp results on the generalized Turán numbers. Eur. J. Combin. 84, 103026 (2020)

    Article  Google Scholar 

  16. Ning, B., Peng, X.: Extensions of the Erdős–Gallai theorem and Luo’s theorem. Combin. Probab. Comput. 29, 128–136 (2020)

    Article  MathSciNet  Google Scholar 

  17. Ning, B., Wang, J.: The formula for Turán number of spanning linear forests. Discrete Math. 343, 111924 (2020)

    Article  MathSciNet  Google Scholar 

  18. Wang, J.: The shifting method and generalized Turán number of matchings. Eur. J. Combin. 85, 103057 (2020)

    Article  Google Scholar 

  19. Zykov, A.A.: On some properties of linear complexes. Mat. Sb. 66, 163–188 (1949)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank an anonymous referee for providing valuable comments and suggestions which improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Natural Science Foundation of China (No. 11871398) and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (No. CX2020190).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LP., Wang, L. & Zhou, J. The Generalized Turán Number of Spanning Linear Forests. Graphs and Combinatorics 38, 40 (2022). https://doi.org/10.1007/s00373-021-02403-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-021-02403-9

Keywords

Mathematics Subject Classification

Navigation