Skip to main content
Log in

Extremal Colorings and Independent Sets

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We consider several extremal problems of maximizing the number of colorings and independent sets in some graph families with fixed chromatic number and order. First, we address the problem of maximizing the number of colorings in the family of connected graphs with chromatic number k and order n where \(k\ge 4\). It was conjectured that extremal graphs are those which have clique number k and size \({k\atopwithdelims ()2}+n-k\). We affirm this conjecture for 4-chromatic claw-free graphs and for all k-chromatic line graphs with \(k\ge 4\). We also reduce this extremal problem to a finite family of graphs when restricted to claw-free graphs. Secondly, we determine the maximum number of independent sets of each size in the family of n-vertex k-chromatic graphs (respectively connected n-vertex k-chromatic graphs and n-vertex k-chromatic graphs with c components). We show that the unique extremal graph is \(K_k\cup E_{n-k}\), \(K_1\vee (K_{k-1}\cup E_{n-k})\) and \((K_1 \vee (K_{k-1} \cup E_{n-k-c+1}))\cup E_{c-1}\) respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alexander, J., Cutler, J., Mink, T.: Independent sets in graphs with given minimum degree. Electron. J. Combin. 19(3), #P37 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Brown, J., Erey, A.: New bounds for chromatic polynomials and chromatic roots. Discrete Math. 338(11), 1938–1946 (2015)

    Article  MathSciNet  Google Scholar 

  3. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164(1), 51–229 (2006)

    Article  MathSciNet  Google Scholar 

  4. Cutler, J.: Coloring graphs with graphs: a survey. Graph Theory Notes N.Y. 63, 7–16 (2012)

    MathSciNet  Google Scholar 

  5. Cutler, J., Radcliffe, A.J.: Extremal problems for independent set enumeration. Electron. J. Combin. 18(1), #P169 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Davies, E., Jenssen, M., Perkins, W., Roberts, B.: Extremes of the internal energy of the Potts model on cubic graphs. Random Struct. Algorithms 53(1), 59–75 (2018). arXiv:1610.08496

    Article  MathSciNet  Google Scholar 

  7. Dong, F.M., Koh, K.M., Teo, K.L.: Chromatic Polynomials and Chromaticity of Graphs. World Scientific, London (2005)

    Book  Google Scholar 

  8. Engbers, J.: Extremal \(H\)-colorings of graphs with fixed minimum degree. J. Graph Theory 79, 103–124 (2015)

    Article  MathSciNet  Google Scholar 

  9. Engbers, J.: Maximizing \(H\)-colorings of connected graphs with fixed minimum degree. J. Graph Theory 85, 780–787 (2017)

    Article  MathSciNet  Google Scholar 

  10. Engbers, J., Galvin, D.: Extremal \(H\)-colorings of trees and 2-connected graphs. J. Combin. Theory Ser. B 122, 800–814 (2017)

    Article  MathSciNet  Google Scholar 

  11. Erey, A.: On the maximum number of colorings of a graph. J. Combin. 9(3), 489–497 (2018). arXiv:1610.07208

    Article  MathSciNet  Google Scholar 

  12. Erey, A.: Maximizing the number of \(x\)-colorings of \(4\)-chromatic graphs. Discrete Math. 341(5), 1419–1431 (2018). https://doi.org/10.1016/j.disc.2017.09.028

    Article  MathSciNet  MATH  Google Scholar 

  13. Faudree, R.J., Gould, R.J., Jacobson, M.S.: Minimum degree and disjoint cycles in claw-free graphs. Combin. Probab. Comput. 21, 129–139 (2012)

    Article  MathSciNet  Google Scholar 

  14. Fox, J., He, X., Manners, F.: A proof of Tomescu’s graph coloring conjecture. arXiv:1712.06067

  15. Galvin, D.: Maximizing \(H\)-colorings of regular graphs. J. Graph Theory 73, 66–84 (2013)

    Article  MathSciNet  Google Scholar 

  16. Galvin, D.: Counting colorings of a regular graph. Graphs Combin. 31, 629–638 (2015)

    Article  MathSciNet  Google Scholar 

  17. Galvin, D., Tetali, P.: On weighted graph homomorphisms, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 63 (2004) Graphs, Morphisms and Statistical Physics, 97104

    Google Scholar 

  18. Guggiari, H., Scott, A.: Maximising \(H\)-colourings of graphs. arXiv:1611.02911

  19. Knox F., Mohar, B.: Maximum number of colourings. I. 4-chromatic graphs. arXiv:1708.01781

  20. Knox, F., Mohar, B.: Maximum number of colourings. II. 5-chromatic graphs. arXiv: 1710.06535

  21. Li, S., Liu, L., Wu, Y.: On the coefficients of the independence polynomial of graphs. J. Combin. Optim. 33, 1324–1342 (2017)

    Article  MathSciNet  Google Scholar 

  22. Loh, P.-S., Pikhurko, O., Sudakov, B.: Maximizing the number of \(q\)-colorings. Proc. Lond. Math. Soc. 101, 655–696 (2010)

    Article  MathSciNet  Google Scholar 

  23. Ma, J., Naves, H.: Maximizing proper colorings on graphs. J. Combin. Theory Ser. B 115, 236–275 (2015)

    Article  MathSciNet  Google Scholar 

  24. Merrifield, R., Simmons, H.: Topological Methods in Chemistry. Wiley, New York (1989)

    Google Scholar 

  25. Prodinger, H., Tichy, R.: Fibonacci numbers of graphs. Fibonacci Q. 20, 16–21 (1982)

    MathSciNet  MATH  Google Scholar 

  26. Tomescu, I.: Le nombre des graphes connexes k-chromatiques minimaux aux sommets étiquetés. C. R. Acad. Sci. Paris 273, 1124–1126 (1971)

    MathSciNet  MATH  Google Scholar 

  27. Tomescu, I.: Le nombre maximal de 3-colorations dun graphe connnexe. Discrete Math. 1, 351–356 (1972)

    Article  MathSciNet  Google Scholar 

  28. Tomescu, I.: Introduction to Combinatorics. Collets (Publishers) Ltd., London (1975)

    Google Scholar 

  29. Tomescu, I.: Maximal chromatic polynomials of connected planar graphs. J. Graph Theory 14, 101–110 (1990)

    Article  MathSciNet  Google Scholar 

  30. Wingard, G.: Properties and Applications of the Fibonacci Polynomial of a Graph, Ph.D. thesis. University of Mississippi, Oxford (1995)

    Google Scholar 

  31. Xu, K.: On the Hosoya index and the Merrifield–Simmons index of graphs with a given clique number. Appl. Math. Lett. 23, 395–398 (2010)

    Article  MathSciNet  Google Scholar 

  32. Zhao, Y.: Extremal regular graphs: independent sets and graph homomorphisms. Amer. Math. Mon. 124, 827–843 (2017). arXiv:1610.09210

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank anonymous referees for their helpful comments. After the completion of our paper, several authors settled some cases of Conjecture 1 independently. Knox and Mohar proved it for \(k=4,5\) in [19, 20] and Fox, He, and Manners proved it for \(k\ge 4\) when \(x=k\) in [14].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysel Erey.

Additional information

J. Engbers’s research was supported by the Simons Foundation Grant 524418.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engbers, J., Erey, A. Extremal Colorings and Independent Sets. Graphs and Combinatorics 34, 1347–1361 (2018). https://doi.org/10.1007/s00373-018-1951-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-018-1951-3

Keywords

Navigation