Skip to main content
Log in

2-Spreads and Transitive and Orthogonal 2-Parallelisms of PG(5, 2)

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A 2-spread is a set of two-dimensional subspaces of PG(d, q), which partition the point set. We establish that up to equivalence there exists only one 2-spread of PG(5, 2). The order of the automorphism group preserving it is 10584. A 2-parallelism is a partition of the set of two-dimensional subspaces by 2-spreads. There is a one-to-one correspondence between the 2-parallelisms of PG(5, 2) and the resolutions of the 2-(63,7,15) design of the points and two-dimensional subspaces. Sarmiento (Graphs and Combinatorics 18(3):621–632, 2002) has classified 2-parallelisms of PG(5, 2), which are invariant under a point transitive cyclic group of order 63. We classify 2-parallelisms with automorphisms of order 31. Among them there are 92 2-parallelisms with full automorphism group of order 155, which is transitive on their 2-spreads. Johnson and Montinaro (Results Math 52(1–2):75–89, 2008) point out that no transitive t-parallelisms of PG(d, q) have been constructed for t > 1. The 92 transitive 2-parallelisms of PG(5, 2) are then the first known examples. We also check them for mutual orthogonality and present a set of ten mutually orthogonal resolutions of the geometric 2-(63,7,15) design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assmus, E.F. Jr., Key, J.D.: Designs and their Codes. Cambridge Tracts in Mathematics, vol. 103. Cambridge University Press, Cambridge (1992)

  2. Baker R.D.: Partitioning the planes of AG 2m (2) into 2-designs. Discrete Math. 15, 205–211 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beth Th., Jungnickel D., Lenz H.: Design Theory. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  4. Beutelspacher A.: On parallelisms in finite projective spaces. Geometriae Dedicata 3(1), 35–45 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beutelspacher A.: Partial spreads in finite projective spaces and partial designs. Math. Z. 145, 211–229 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blokhuis, A., Brouwer, A.E., Wilbrink, H.A.: Blocking sets in PG(2,p) for small p, and partial spreads in PG(3,7). Adv. Geometry, Special Issue, 245–253 (2003)

  7. Colbourn, C.J., Dinitz, J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn. CRC Press, London (2007)

    MATH  Google Scholar 

  8. Denniston R.: Some packings of projective spaces. Atti Accad Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 52, 36–40 (1972)

    MathSciNet  MATH  Google Scholar 

  9. Eisfeld, J., Storme, L.: (Partial) t-spreads and minimal t-covers in finite projective spaces. Lecture notes from the Socrates Intensive Course on Finite Geometry and its Applications, Ghent, April 2000

  10. Fuji-Hara R.: Mutually 2-orthogonal resolutions of finite projective space. Ars Combinatoria 21, 163–166 (1986)

    MathSciNet  MATH  Google Scholar 

  11. Jha V., Johnson N.L.: The classification of spreads in PG(3,q) admitting linear groups of order q(q + 1), I. odd order. J. Geometry 81, 46–80 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Johnson N.L.: Subplane Covered Nets, Monographs and Textbooks in Pure and Applied Mathematics, vol. 222. Marcel Dekker, New York (2000)

    Google Scholar 

  13. Johnson, N.L.: Some new classes of finite parallelisms. Note Mat. 20(2), 77–88 (2000/2001)

    Google Scholar 

  14. Johnson N.L.: Two-transitive parallelisms. Des Codes Cryptogr 22(2), 179–189 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Johnson N.L.: Parallelisms of projective spaces. J. Geometry 76, 110–182 (2003)

    MATH  Google Scholar 

  16. Johnson N.L., Montinaro A.: The doubly transitive t-parallelisms. Results Math. 52(1–2), 75–89 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnson N.L., Pomareda R.: m-Parallelisms. Int. J. Math. Math. Sci. 32, 167–176 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaski P., Östergård P.: Classification algorithms for codes and designs. Springer, Berlin (2006)

    MATH  Google Scholar 

  19. Ledermann W., Weir A.J.: Group Theory, 2nd edn. Longman, Oxford (1996)

    MATH  Google Scholar 

  20. Mateva Z., Topalova S.: Line spreads of PG(5,2). J. Comb. Des. 17(1), 90–102 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mavron V.C., McDonough T., Tonchev V.D.: On affine designs and Hadamard designs with line spreads. Discrete Math. 308, 2742–2750 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Penttila T., Williams B.: Regular packings of PG(3,q). Eur. J. Combinat. 19(6), 713–720 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Prince, A.R.: Parallelisms of PG(3,3) invariant under a collineation of order 5. In: Norman, L.J. (ed.) Mostly Finite Geometries (Iowa City, 1996). Lecture Notes in Pure and Applied Mathematics, vol. 190, pp 383–390. Marcel Dekker, New York (l997)

  24. Prince A.R.: The cyclic parallelisms of PG(3,5). Eur. J. Combinat. 19(5), 613–616 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sarmiento J.: Resolutions of PG(5,2) with point-cyclic automorphism group. J. Combinat. Des. 8(1), 2–14 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Sarmiento J.: On point-cyclic resolutions of the 2-(63,7,15) design associated with PG(5,2). Graphs and Combinatorics 18(3), 621–632 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Soicher, L.: Computation of Partial Spreads. Web preprint, http://www.maths.qmul.ac.uk/~leonard/partialspreads (2000) Accessed 31 January 2009

  28. Stinson D.R., Vanstone S.A.: Orthogonal packings in PG(5,2). Aequationes Mathematicae 31(1), 159–168 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Storme, L.: Finite Geometry. The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 702–729. CRC Press, London (2007)

  30. Tonchev V.D.: Combinatorial Configurations. Longman Scientific and Technical, New York (1988)

    MATH  Google Scholar 

  31. Zaicev, G., Zinoviev, V., Semakov, N.: Interrelation of Preparata and Hamming codes and extension of Hamming codes to new double error-correcting codes. In: Proceedings of the 2nd International Symp. Inform. Theory, pp. 257–263 (1971)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Topalova.

Additional information

This work was partially supported by the Bulgarian National Science Fund, Contract No MM 1405. Part of the results were announced at the Thirty Seventh Spring Conference of the Union of Bulgarian Mathematicians, Borovetz, April 2008, Bulgaria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topalova, S., Zhelezova, S. 2-Spreads and Transitive and Orthogonal 2-Parallelisms of PG(5, 2). Graphs and Combinatorics 26, 727–735 (2010). https://doi.org/10.1007/s00373-010-0943-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-0943-8

Keywords

Mathematics Subject Classification (2000)

Navigation