Skip to main content
Log in

Coarse-to-fine blind image deblurring based on K-means clustering

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Blind image deblurring is a challenging image processing problem, and a proper solution for this problem has many applications in the real world. This is an ill-posed problem, as both the sharp image and blur kernel are unknown. The traditional methods based on maximum a posterior (MAP) apply heavy constraints on the latent image or blur kernel to find the solution. However, these constraints are not always effective; meanwhile, they are very time-consuming. Recently, new approaches based on deep learning have emerged. The methods based on this approach suffer from two problems: the need for a large number of images and kernels for training and also the dependency of the result on the training data. In this paper, we propose a multiscale method based on MAP framework for image motion deblurring. In this method, we represent the blurry image in different scales. We suggest segmenting the image of each scale using \(\kappa\)-means clustering. Using the image information at dominant edges guided by the segmented images, the blur kernel is estimated at each scale. The blur kernel at the finest level of the pyramid is estimated from the coarser levels in a coarse-to-fine manner. Unlike the existing MAP-based methods, the proposed method does not need mathematically complicated assumptions to estimate the intermediate latent image. So the proposed image deblurring is run fast. We evaluated the proposed method and compared it to the existing methods. The experimental results on real and synthetic blurry images demonstrate that the proposed scheme has promising results. The proposed method competes with the existing MAP-based methods for reconstructing qualitative sharp images, while the execution time for our method is considerably less.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the [Lai] repository, (http://vllab.ucmerced.edu/wlai24/cvpr16_deblur_study/).

References

  1. Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., and Freeman, W. T.: Removing camera shake from a single photograph. In: ACM SIGGRAPH 2006 Pap. SIGGRAPH ’06, pp. 787–794 (2006). https://doi.org/10.1145/1179352.1141956.

  2. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. (2008). https://doi.org/10.1145/1360612.1360672

    Article  Google Scholar 

  3. Joshi, N., Szeliski, R., and Kriegman, D. J.: PSF estimation using sharp edge prediction. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008). https://doi.org/10.1109/CVPR.2008.4587834.

  4. Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. 28(5), 1–8 (2009). https://doi.org/10.1145/1618452.1618491

    Article  Google Scholar 

  5. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. Eur. Conf. Comput. Vis. (2010). https://doi.org/10.1007/978-3-642-15549-9_12

    Article  Google Scholar 

  6. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding blind deconvolution algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2354–2367 (2011). https://doi.org/10.1109/TPAMI.2011.148

    Article  Google Scholar 

  7. Xu, L., Lu, C., Xu, Y., and Jia, J.: Image smoothing via L0 gradient minimization. In: Proceedings of the 2011 SIGGRAPH Asia conference, pp. 1–12 (2011). https://doi.org/10.1145/2024156.2024208.

  8. Krishnan, D., Tay, T., and Fergus, R.: Blind deconvolution using a normalized sparsity measure. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 233–240 (2011). https://doi.org/10.1109/CVPR.2011.5995521.

  9. Kotera, J., Šroubek, F., Milanfar, P.: Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors. Int. Conf. Comput. Anal. Images Patterns (2013). https://doi.org/10.1007/978-3-642-40246-3_8

    Article  Google Scholar 

  10. Pan, J., Liu, R., Su, Z., Gu, X.: Kernel estimation from salient structure for robust motion deblurring. Signal Process. Image Commun. 28(9), 1156–1170 (2013). https://doi.org/10.1016/j.image.2013.05.001

    Article  Google Scholar 

  11. Sun, L., Cho, S., Wang, J., and Hays, J.: Edge-based blur kernel estimation using patch priors. In: IEEE International Conference on Computational Photography (ICCP), pp. 1–8 (2013). https://doi.org/10.1109/ICCPhot.2013.6528301.

  12. Pan, J., Liu, R., Su, Z. and Liu, G.: Motion blur kernel estimation via salient edges and low rank prior. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2014). https://doi.org/10.1109/ICME.2014.6890182.

  13. L. Xu, S. Zheng, and J. Jia, “Unnatural L0 sparse representation for natural image deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107–1114 (2013). https://doi.org/10.1109/CVPR.2013.147.

  14. Michaeli, T. Irani, M.: Blind deblurring using internal patch recurrence. In: European Conference on Computer Vision, pp. 783–798 (2014). https://doi.org/10.1007/978-3-319-10578-9_51.

  15. Pan, J., Hu, Z., Su, Z., Yang, M.H.: L0-regularized intensity and gradient prior for deblurring text images and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 342–355 (2017). https://doi.org/10.1109/TPAMI.2016.2551244

    Article  Google Scholar 

  16. Ren, W., Cao, X., Pan, J., Guo, X., Zuo, W., Yang, M.H.: Image deblurring via enhanced low-rank prior. IEEE Trans. Image Process. 25(7), 3426–3437 (2016). https://doi.org/10.1109/TIP.2016.2571062

    Article  MathSciNet  Google Scholar 

  17. Pan, J., Sun, D., Pfister, H., and Yang, M. H.: Blind image deblurring using dark channel prior. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1628–1636 (2016). https://doi.org/10.1109/CVPR.2016.180.

  18. Yan, Y., Ren, W., Guo, Y., Wang, R. and Cao, X.: Image Deblurring via extreme channels prior. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6978–6986 (2017). https://doi.org/10.1109/CVPR.2017.738.

  19. Chen, L., Fang, F., Wang, T. and Zhang, G.: Blind image deblurring with local maximum gradient prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1742–1750 (2019). https://doi.org/10.1109/CVPR.2019.00184.

  20. Bai, Y., Cheung, G., Liu, X., Gao, W.: Graph-based blind image deblurring from a single photograph. IEEE Trans. Image Process. 28(3), 1404–1418 (2019). https://doi.org/10.1109/TIP.2018.2874290

    Article  MathSciNet  Google Scholar 

  21. Bai, Y., Jia, H., Jiang, M., Liu, X., Xie, X., Gao, W.: Single-image blind deblurring using multi-scale latent structure prior. IEEE Trans. Circuits Syst. Video Technol. 30(7), 2033–2045 (2020). https://doi.org/10.1109/TCSVT.2019.2919159

    Article  Google Scholar 

  22. Aliyan, S., Broumandnia, A.: A new machine learning approach to deblurring license plate using k-means clustering method. Int. J. Adv. Res. Artif. Intell. (2012). https://doi.org/10.14569/IJARAI.2012.010202

    Article  Google Scholar 

  23. Dhanachandra, N., Manglem, K., Chanu, J.: Image segmentation using K-means clustering algorithm and subtractive clustering algorithm. Procedia Comput. Sci. 54, 764–771 (2015)

    Article  Google Scholar 

  24. Schuler, C.J., Hirsch, M., Harmeling, S., Scholkopf, B.: Learning to deblur. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1439–1451 (2016). https://doi.org/10.1109/TPAMI.2015.2481418

    Article  Google Scholar 

  25. Nah, S., Kim, T. H., and Lee, K. M.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 257–265 (2017). https://doi.org/10.1109/CVPR.2017.35

  26. Pan, J., Ren, W., Hu, Z., Yang, M.H.: Learning to deblur images with exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 41(6), 1412–1425 (2019). https://doi.org/10.1109/TPAMI.2018.2832125

    Article  Google Scholar 

  27. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., and Matas, J.: Deblurgan: blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018).

  28. Kupyn, O., Martyniuk, T., Wu, J., and Wang, Z.: Deblurgan-v2: deblurring (orders-of-magnitude) faster and better. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8878–8887 (2019).

  29. Yuan, Q., Li, J., Zhang, L., Wu, Z., Liu, G.: Blind motion deblurring with cycle generative adversarial networks. Vis. Comput. 36(8), 1591–1601 (2020). https://doi.org/10.1007/s00371-019-01762-y

    Article  Google Scholar 

  30. Ren, D., Zhang, K., Wang, Q., Hu, Q., and Zuo, W.: Neural blind deconvolution using deep priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3341–3350 (2020).

  31. Chang, M., Feng, H., Xu, Z., Li, Q.: Low-light image restorationwith short- and long-exposure raw pairs. IEEE Trans. Multimedia 24, 702–714 (2022). https://doi.org/10.1109/TMM.2021.3058586

    Article  Google Scholar 

  32. Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM Trans. Graph. (2011). https://doi.org/10.1145/1944846.1944852

    Article  Google Scholar 

  33. Lai, W. S., Huang, J. B., Hu, Z., Ahuja, N., and Yang, M. H.: A comparative study for single image blind deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2016-Decem, pp. 1701–1709 (2016). https://doi.org/10.1109/CVPR.2016.188.

  34. Levin, A., Weiss, Y., Durand, F., Freeman, W. T.: Understanding and evaluating blind deconvolution algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1964–1971 (2009). https://doi.org/10.1109/CVPR.2009.5206815.

  35. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011). https://doi.org/10.1561/2200000016

    Article  Google Scholar 

  36. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imag. Sci. 2(2), 323–343 (2009). https://doi.org/10.1137/080725891

    Article  MathSciNet  Google Scholar 

  37. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. Adv. Neural Inf. Proc. Syst. 22, 1033–1041 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Eqtedaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eqtedaei, A., Ahmadyfard, A. Coarse-to-fine blind image deblurring based on K-means clustering. Vis Comput 40, 333–344 (2024). https://doi.org/10.1007/s00371-023-02785-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02785-2

Keywords

Navigation