Skip to main content

Advertisement

Log in

Research on the algorithm of helmet-wearing detection based on the optimized yolov4

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

At construction sites, wearing hard hats is an important and effective measure to protect workers from accidental injury. In order to remind workers to wear hard hats at all times, it is necessary to automate the detection process of hard hat-wearing. Limited to the environment, human posture, personal privacy and other elements, traditional detection methods often cannot detect the wearing of hard hats in a handy and quick manner. In the paper, an improved deep learning model based on yolov4 is proposed to detect hard hat-wearing. The accuracy and speed of the model are optimized by replacing the cumbersome overlapping of multiple convolution modules in the feature pyramid of yolov4 with cross-stage hierarchy modules. At the same time, since hard hat detection is to detect small targets, we improve the performance of yolov4 to detect small targets by changing the yolov4 feature layer output and linear transformation of anchors. The final algorithm obtains a mean average precision of 93.37% in hard hat detection, with an increase of 3.15% compared with that of the original yolov4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bereau of Labor Statistics, Construction: NAICS 23, 2019. https://www.bls.gov/iag/tgs/iag23.htm

  2. Konda, S., Tiesman, H.M., Reichard, A.A.: Fatal traumatic brain injuries in the construction industry, 2003–2010. Am. J. Ind. Med. 59(3), 212–220 (2016)

    Article  Google Scholar 

  3. Akbar-Khanzadeh, F., Bisesi, M.S., Rivas, R.D.: Comfort of personal protective equipment. Appl. Ergon. 26(3), 195–198 (1995)

    Article  Google Scholar 

  4. Zheng, L., Zhou, W., Tang, W., et al.: A 3D indoor positioning system based on low-cost MEMS sensors. Simul. Model. Pract. Theory 65, 45–56 (2016)

    Article  Google Scholar 

  5. Alhmiedat, T.A., Yang, S.H.: A survey: localization and tracking mobile targets through wireless sensors network[J]. (2007)

  6. Yu, X., Prevedouros, P.D.: Performance and challenges in utilizing non-intrusive sensors for traffic data collection[J]. (2013)

  7. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  8. Wang, C.Y., Liao, H.Y.M., Wu, Y.H., et al.: CSPNet: a new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp, 390–391 (2020)

  9. Kelm, A., Laußat, L., Meins-Becker, A., et al.: Mobile passive radio frequency identification (RFID) portal for automated and rapid control of personal protective equipment (PPE) on construction sites. Autom. Constr. 36, 38–52 (2013)

    Article  Google Scholar 

  10. Barro-Torres, S., Fernández-Caramés, T.M., Pérez-Iglesias, H.J., et al.: Real-time personal protective equipment monitoring system. Comput. Commun. 36(1), 42–50 (2012)

    Article  Google Scholar 

  11. Zhang, H., Yan, X., Li, H., et al.: Real-time alarming, monitoring, and locating for non-hard-hat use in construction. J. Constr. Eng. Manag. 145(3), 04019006 (2019)

    Article  Google Scholar 

  12. Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587 (2014)

  13. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp. 1440–1448 (2015)

  14. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  15. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788 (2016)

  16. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271 (2017)

  17. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  18. Liu, W., Anguelov, D., Erhan, D., et al.: Ssd: single shot multibox detector. In: European conference on computer vision, pp. 21–37. Springer, Cham (2016)

  19. Fang, Q., Li, H., Luo, X., et al.: Detecting non-hardhat-use by a deep learning method from far-field surveillance videos. Autom. Constr. 85, 1–9 (2018)

    Article  Google Scholar 

  20. Nath, N.D., Behzadan, A.H., Paal, S.G.: Deep learning for site safety: real-time detection of personal protective equipment. Autom. Constr. 112, 103085 (2020)

    Article  Google Scholar 

  21. Wang, L., Xie, L., Yang, P., et al.: Hardhat-wearing detection based on a lightweight convolutional neural network with multi-scale features and a top-down module. Sensors 20(7), 1868 (2020)

    Article  Google Scholar 

  22. Howard, A.G., Zhu, M., Chen, B., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  23. Liu, S., Qi, L., Qin, H., et al.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8759–8768 (2018)

  24. He, K., Zhang, X., Ren, S., et al.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  25. Chen, X., Fang, H., Lin, T.Y., Vedantam, R., Gupta, S., Dollár, P., Zitnick, C.L.: Microsoft COCO captions: data collection and evaluation server. arXiv preprint arXiv:1504.00325 (2015)

  26. Everingham, M., Van Gool, L., Williams, C.K.I., et al.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  27. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

  28. Duan, K., Bai, S., Xie, L., et al.: Centernet: Keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6569–6578 (2019)

Download references

Acknowledgements

This work was supported in part by the Sichuan Key Laboratory of Agricultural Information Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuliang Duan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Duan, X., Pan, Y. et al. Research on the algorithm of helmet-wearing detection based on the optimized yolov4. Vis Comput 39, 2165–2175 (2023). https://doi.org/10.1007/s00371-022-02471-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02471-9

Keywords

Navigation