Skip to main content
Log in

DRDDN: dense residual and dilated dehazing network

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Recently, deep convolutional neural networks (CNNs) have made great achievements in image restoration. However, there exists a large space to improve the performance of CNN-based dehazing model. In this paper, we design a fully end-to-end dehazing network, which can be called as dense residual and dilated dehazing network (DRDDN), for single image dehazing. In detail, a dilated densely connected block is designed to fully exploit multi-scale features through an adaptive learning process. The receptive field of the network is enlarged by dilation convolution without losing spatial information. Furthermore, we use deep residual to propagate the low-level features to high-level layers. Therefore, our model can fully exploit both low-level and high-level features for dehazing. Experiments on benchmark datasets and real-world hazy images show that the proposed DRDDN achieves favorable performance against the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fan, C., Peng, Y., Peng, S., Zhang, H., Wu, Y., Kwong, S.: Detection of train driver fatigue and distraction based on forehead EEG: a time-series ensemble learning method. IEEE Trans. Intell. Transport. Syst. (2021). https://doi.org/10.1109/TITS.2021.3125737

  2. Li, Q., Li, L., Wang, W., Li, Q., Zhong, J.: A comprehensive exploration of semantic relation extraction via pre-trained CNNs. Knowl. Based Syst. 194, 105488 (2020)

    Article  Google Scholar 

  3. Saini, M.K., Wang, X., Atrey, P.K., Kankanhalli, M.S.: Adaptive workload equalization in multi-camera surveillance systems. IEEE Trans. Multimed. 14(3–1), 555–562 (2012)

    Article  Google Scholar 

  4. Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int. J. Comput. Vis. 48(3), 233–254 (2002)

    Article  MATH  Google Scholar 

  5. Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Instant dehazing of images using polarization. In: IEEE Conference on Computer Vision and Pattern Recognition (2001)

  6. Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003)

    Article  Google Scholar 

  7. Shwartz, S., Namer, E., Schechner, Y.Y.: Blind haze separation. In: 2006 IEEE on Computer Vision and Pattern Recognition, vol. 2, pp. 1984–1991. IEEE (2006)

  8. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)

  9. Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: IEEE International Conference on Computer Vision (2013)

  10. Fattal, R.: Dehazing using color-lines. ACM Trans. Graph. 34(1), 13 (2014)

    Article  Google Scholar 

  11. Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1674–1682 (2016)

  12. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: European Conference on Computer Vision (2016)

  15. Ren, W., Pan, J., Zhang, H., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks with holistic edges. Int. J. Comput. Vis. 128, 1–20 (2019)

    Google Scholar 

  16. Berman, D., Treibitz, T., Avidan, S.: Air-light estimation using haze-lines. In: 2017 IEEE International Conference on Computational Photography (ICCP), pp. 1–9. IEEE (2017)

  17. Sulami, M., Glatzer, I., Fattal, R., Werman, M.: Automatic recovery of the atmospheric light in hazy images. In: IEEE International Conference on Computational Photography (2014)

  18. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: An all-in-one network for dehazing and beyond. In: IEEE International Conference on Computer Vision (2017)

  19. Ren, W., Ma, L., Zhang, J., Pan, J., Cao, X., Liu, W., Yang, M.-H.: Gated fusion network for single image dehazing. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

  20. Zhang, S., Ren, W., Yao, J.: Fully end-to-end dehazing. In: ICME, Feed-net (2018)

  21. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

  22. Zhang, S., He, F.: DRCDN: learning deep residual convolutional dehazing networks. Vis. Comput. 36, 1–12 (2019)

    Google Scholar 

  23. Yu, F., Koltun, V., Funkhouser, T.A.: Dilated residual networks. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, p. 3 (2017)

  24. Zhu, Y., Tang, G., Zhang, X., Jiang, J., Tian, Q.: Haze removal method for natural restoration of images with sky. Neurocomputing 275, 499–510 (2018)

    Article  Google Scholar 

  25. Zhang, S., Yao, J., Garcia, E.B.: Single image dehazing via image generating. In: Pacific-Rim Symposium on Image and Video Technology, pp. 123–136. Springer, Berlin (2017)

  26. Zhang, S., Yao, J.: Single image dehazing using fixed points and nearest-neighbor regularization. In: Asian Conference on Computer Vision, pp. 18–33 (2016)

  27. Zhang, S., He, F., Yao, J.: Single image dehazing using deep convolution neural networks. In: Pacific Rim Conference on Multimedia, pp. 315–325. Springer, Berlin (2017)

  28. Zhang, S., He, F., Ren, W., Yao, J.: Joint learning of image detail and transmission map for single image dehazing. Vis. Comput. 36(2), 305–316 (2020)

    Article  Google Scholar 

  29. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

  30. Ren, W., Zhang, J., Ma, L., Pan, J., Cao, X., Zuo, W., Liu, W., Yang, M.-H.: Deep non-blind deconvolution via generalized low-rank approximation. In: Advances in Neural Information Processing Systems, vol. 18, pp. 297–307 (2018)

  31. Yan, Y., Ren, W., Cao, X.: Recolored image detection via a deep discriminative model. IEEE Trans. Inf. Forensics Secur. 14(1), 5–17 (2018)

    Article  Google Scholar 

  32. Ren, W., Liu, S., Ma, L., Xu, Q., Xu, X., Cao, X., Du, J., Yang, M.-H.: Low-light image enhancement via a deep hybrid network. IEEE Trans. Image Process. 28(9), 4364–4375 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ren, W., Zhang, J., Pan, J., Liu, S., Ren, J., Du, J., Cao, X., Yang, M.-H.: Deblurring dynamic scenes via spatially varying recurrent neural networks. IEEE Trans. Pattern Anal. Mach. Intell. (2021). https://doi.org/10.1109/TPAMI.2021.3061604

  34. He, Z., Cao, Y., Du, L., Xu, B., Zhuang, Y.: MRFN: multi-receptive-field network for fast and accurate single image super-resolution. IEEE Trans. Multimed. PP(99), 1 (2019)

    Google Scholar 

  35. Tan, X., Zhu, H., Shao, Z., Hou, X., Hao, Y., Ma, L.: Saliency detection by deep network with boundary refinement and global context. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2018)

  36. Tan, X., Xu, K., Cao, Y., Zhang, Y., Ma, L., Lau, R.W.H.: Night-time scene parsing with a large real dataset. IEEE Trans. Image Process. 30, 9085–9098 (2021)

    Article  Google Scholar 

  37. Ren, W., Zhang, J., Xu, X., Ma, L., Cao, X., Meng, G., Liu, W.: Deep video dehazing with semantic segmentation. IEEE Trans. Image Process. 28(4), 1895–1908 (2018)

    Article  MathSciNet  Google Scholar 

  38. Zhang, S., He, F., Ren, W.: NLDN: non-local dehazing network for dense haze removal. Neurocomputing 410, 363–373 (2020)

    Article  Google Scholar 

  39. Li, L., Dong, Y., Ren, W., Pan, J., Gao, C., Sang, N., Yang, M.-H.: Semi-supervised image dehazing. IEEE Trans. Image Process. 29, 2766–2779 (2019)

    Article  MATH  Google Scholar 

  40. Ren, W., Pan, J., Zhang, H., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks with holistic edges. Int. J. Comput. Vis. 128(1), 240–259 (2020)

    Article  Google Scholar 

  41. Zhang, S., Ren, W., Tan, X., Wang, Z.-J., Liu, Y., Zhang, J., Zhang, X., Cao, X.: Semantic-aware dehazing network with adaptive feature fusion. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3124231

  42. Li, S., Ren, W., Wang, F., Araujo, I.B., Tokuda, E.K., Junior, R.H., Cesar-Jr, R.M., Wang, Z., Cao, X.: A comprehensive benchmark analysis of single image deraining: current challenges and future perspectives. Int. J. Comput. Vis. 129(4), 1301–1322 (2021)

    Article  Google Scholar 

  43. Liu, X., Ma, Y., Shi, Z., Chen, J.: Griddehazenet: attention-based multi-scale network for image dehazing. In: IEEE International Conference on Computer Vision (2019)

  44. Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: FFA-NET: feature fusion attention network for single image dehazing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11908–11915 (2020)

  45. Chen, Z., Wang, Y., Yang, Y., Liu, D.: PSD: principled synthetic-to-real dehazing guided by physical priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7180–7189 (2021)

  46. Zheng, Z., Ren, W., Cao, X., Hu, X., Wang, T., Song, F., Jia, X.: Ultra-high-definition image dehazing via multi-guided bilateral learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 16185–16194 (2021)

  47. Zhang, J., Ren, W., Zhang, S., Zhang, H., Nie, Y., Xue, Z., Cao, X.: Hierarchical density-aware dehazing network. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3070310

  48. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  49. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, p. 3 (2017)

  50. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

  51. Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  52. Yang, D., Sun, J.: Proximal dehaze-net: a prior learning-based deep network for single image dehazing. In: ECCV, pp. 702–717 (2018)

  53. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: European Conference on Computer Vision (2012)

  54. Liu, F., Shen, C., Lin, G., Reid, I.: Learning depth from single monocular images using deep convolutional neural fields. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2024–2039 (2016)

    Article  Google Scholar 

  55. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  56. Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z.: Benchmarking single image dehazing and beyond. TIP 28, 492–505 (2018)

    MathSciNet  MATH  Google Scholar 

  57. Fahim, M.A.-N.I., Jung, H.Y.: Single image dehazing using end-to-end deep-dehaze network. Electronics 10(7), 817 (2021)

    Article  Google Scholar 

  58. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  59. Tarel, J.-P., Hautiere, N.: Fast visibility restoration from a single color or gray level image. In: IEEE International Conference on Computer Vision (2009)

  60. Tang, K., Yang, J., Wang, J.: Investigating haze-relevant features in a learning framework for image dehazing. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2995–3000 (2014)

  61. Chen, C., Do, M.N., Wang, J.: Robust image and video dehazing with visual artifact suppression via gradient residual minimization. In: European Conference on Computer Vision (2016)

  62. Zhang, Y., Ding, L., Sharma, G.: Hazerd: an outdoor scene dataset and benchmark for single image dehazing. In: ICIP, pp. 3205–3209. IEEE (2017)

  63. Ancuti, C.O., Ancuti, C., Timofte, R., De Vleeschouwer, C.: O-haze: a dehazing benchmark with real hazy and haze-free outdoor images. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 754–762 (2018)

  64. Ancuti, C.O., Ancuti, C., Sbert, M., Timofte, R.: Dense haze: a benchmark for image dehazing with dense-haze and haze-free images. arXiv preprint arXiv:1904.02904 (2019)

  65. Ancuti, C., Ancuti, C.O., De Vleeschouwer, C.: D-hazy: a dataset to evaluate quantitatively dehazing algorithms. In: IEEE International Conference on Image Processing, pp. 2226–2230. IEEE (2016)

  66. Morales, P., Klinghoffer, T., Lee, S.J.: Feature forwarding for efficient single image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

  67. Dudhane, A., Singh Aulakh, H., Murala, S.: Ri-gan: an end-to-end network for single image haze removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

  68. Bianco, S., Celona, L., Piccoli, F., Schettini, R.: High-resolution single image dehazing using encoder–decoder architecture. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

  69. Guo, T., Cherukuri, V., Monga, V.: Dense123’color enhancement dehazing network. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

  70. Zhang, X., Wang, T., Wang, J., Tang, G., Zhao, L.: Pyramid channel-based feature attention network for image dehazing. Comput. Vis. Image Underst. 197, 103003 (2020)

    Article  Google Scholar 

  71. Hautière, N., Tarel, J.-P., Aubert, D., Dumont, E.: Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal. Stereol. 27(2), 87–95 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  72. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: IEEE International Conference on Computer Vision, pp. 4068–4076 (2015)

Download references

Acknowledgements

We thank anonymous reviewers very much for their suggestive comments that improve the quality of this paper. Shengdong Zhang and Fazhi He were partially supported by the NSFC (Nos. 61472289, 41571436). Shengdong Zhang were partially supported by Public Welfare Technology Application Research Project of Zhejiang Province (No. LGG22F010004).

Funding

Funding was provided by National Key Research and Develop Program of China (Grant No. 2017YFB0503004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazhi He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, J., He, F. et al. DRDDN: dense residual and dilated dehazing network. Vis Comput 39, 953–969 (2023). https://doi.org/10.1007/s00371-021-02377-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02377-y

Keywords

Navigation