Skip to main content
Log in

Computer-aided diagnostic network for brain tumor classification employing modulated Gabor filter banks

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

MR brain tumor classification is one of the extensively utilized approaches in medical prognosis. However, analyzing and processing MR brain images is still quite a task for radiologists. To encounter this problem, the evaluation of existing canonical techniques has already been done. There are numeral MR brain tumor classification approaches that are being used for medical diagnosis. In this paper, we have developed an automated computer-aided network for diagnosis of MR brain tumor class, i.e., HGG and LGG. We have proffered a Gabor-modulated convolutional filter-based classifier for brain tumor classification. The inclusion of Gabor filter dynamics endows the competency to deal with spatial and orientational transformations. This mere modification (modulation) of conventional convolutional filters by Gabor filters empowers the proposed architecture to learn relatively smaller feature maps and thereby, decreasing network parameter requirement. We have introduced some skip connections to our modulated CNN architecture without introducing an extra network parameter. Pre-trained networks, i.e., Alex-Net, Google-Net (Inception V1), Res-Net and VGG 19 have been considered for performance evaluation of our proposed Gabor-modulated CNN. Additionally, some popular machine learning classification techniques have also been considered for comparative analysis. Experimental findings demonstrate that our proposed network has limited network parameters to learn; therefore, it is quite easy to train such networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ames, W.F.: Numerical Methods for Partial Differential Equations. Academic Press, London (2014)

    Google Scholar 

  2. Bakas, S., Reyes, M., Jakab, A.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)

  3. Bakas, S., Akbari, H., Sotiras, A., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  4. Barcelos, C.A.Z., Pires, V.B.: An automatic based nonlinear diffusion equations scheme for skin lesion segmentation. Appl. Math. Comput. 215(1), 251–261 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Cabezas, M., Valverde, S., González-Villà, S. et al.: Survival prediction using ensemble tumor segmentation and transfer learning. arXiv preprint arXiv:1810.04274 (2018)

  6. Caver, E., Chang, L., Zong, W. et al.: Automatic brain tumor segmentation using a U-net neural network. In: Pre-Conference Proceedings of the 7th MICCAI BraTS Challenge, pp. 63–73 (2018)

  7. Daugman, J.G.: Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans. Acoust. Speech Signal Process. 36(7), 1169–1179 (1988)

    Article  Google Scholar 

  8. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  9. Festa, J., Pereira, S., Mariz, J.A., et al.: Automatic brain tumor segmentation of multi-sequence MR images using random decision forests. Proc. NCI-MICCAI BRATS 1, 23–26 (2013)

    Google Scholar 

  10. Girshick, R., Donahue, J., Darrell, T. et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp. 580–587 (2012)

  11. Girshick, R., Donahue, J., Darrell, T. et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp. 580–587 (2014)

  12. Gupta, T., Gandhi, T.K., Gupta, R.K., et al.: Classification of patients with tumor using MR FLAIR images. Pattern Recogn. Lett. (2018). https://doi.org/10.1016/j.patrec.2017.10.037

    Article  Google Scholar 

  13. Hang, X., Wu, F.X.: Sparse representation for classification of tumors using gene expression data. J. Biomed. Biotechnol. (2009). https://doi.org/10.1155/2009/403689

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S. et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp. 770–778 (2016)

  15. Hsieh, K.L.C., Lo, C.M., Hsiao, C.J.: Computer-aided grading of gliomas based on local and global MRI features. Comput. Methods Progr. Biomed. 139, 31–38 (2017)

    Article  Google Scholar 

  16. Ji, S., Xu, W., Yang, M., et al.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2012)

    Article  Google Scholar 

  17. Jiang, Z., Lin, Z., Davis, L.S.: Learning a discriminative dictionary for sparse coding via label consistent K-SVD. In: CVPR. IEEE, pp. 1697–1704 (2011)

  18. Jones, T.L., Byrnes, T.J., Yang, G., et al.: Brain tumor classification using the diffusion tensor image segmentation (D-SEG) technique. Neuro-oncology 17(3), 466–476 (2015)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2018)

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

  21. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  22. Lee, T.S.: Image representation using 2D Gabor wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 959–971 (1996)

    Article  Google Scholar 

  23. Li, Y., Dou, Q., Yu, J. et al.: Automatic brain tumor segmentation from MR images via a multimodal sparse coding based probabilistic model. In: International Workshop on Pattern Recognition in NeuroImaging. IEEE, pp. 41–44 (2015)

  24. Li, X., Shen, H., Zhang, L., et al.: Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning. IEEE Trans. Geosci. Remote Sens. 52(11), 7086–7098 (2014)

    Article  Google Scholar 

  25. Li, Y., Jia, F., Qin, J.: Brain tumor segmentation from multimodal magnetic resonance images via sparse representation. Artif. Intell. Med. 73, 1–13 (2016)

    Article  Google Scholar 

  26. Meier, R., Bauer, S., Slotboom, J., et al.: A hybrid model for multimodal brain tumor segmentation. Multimodal Brain Tumor Segment. 31, 31–37 (2013)

    Google Scholar 

  27. Ouyang, W., Wang, X.: Joint deep learning for pedestrian detection. In: Proceedings of the IEEE International Conference on Computer Vision. IEEE, pp. 2056–2063 (2013)

  28. Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2010)

    Article  Google Scholar 

  29. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, pp. 234–241 (2015)

  30. Sarwar, S.S., Panda, P., Roy, K.: Gabor filter assisted energy efficient fast learning convolutional neural networks. In: IEEE/ACM International Symposium on Low Power Electronics and Design. IEEE, pp. 1–6 (2017)

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  32. Soltaninejad, M., Yang, G., Lambrou, T., et al.: Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int. J. Comput. Assist. Radiol. Surg. 12(2), 183–203 (2017)

    Article  Google Scholar 

  33. Szegedy, C., Liu, W., Jia, Y.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp. 1–9 (2015)

  34. Tumor Types.: Understanding Brain Tumors. National brain tumor Society (2018)

  35. Wang, L., Shi, F., Li, G., et al.: Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage 84, 141–158 (2014)

    Article  Google Scholar 

  36. Wright, J., Ma, Y., Mairal, J., et al.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)

    Article  Google Scholar 

  37. Yang, G., Jones, T.L., Howe, F.A., et al.: Morphometric model for discrimination between glioblastoma multiforme and solitary metastasis using three-dimensional shape analysis. Magn. Reson. Med. 75(6), 2505–2516 (2016)

    Article  Google Scholar 

  38. Zacharaki, E.I., Wang, S., Chawla, S., et al.: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med. 62(6), 1609–1618 (2009)

    Article  Google Scholar 

  39. Zhan, T., Gu, S., Feng, C., et al.: Brain tumor segmentation from multispectral MRIS using sparse representation classification and markov random field regularization. Int. J. Signal Process. 8(9), 229–238 (2015)

    Google Scholar 

  40. Zhao, L., Sarikaya, D., Corso, J.J.: Automatic brain tumor segmentation with MRF on supervoxels. In: Proceedings of NCI-MICCAI BRATS, pp. 51–54 (2013)

  41. Zhou, Y., Ye, Q., Qiu, Q. et al.: Oriented response networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp. 519–528 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This paper does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Goel, A. & Raghuvanshi, D.K. Computer-aided diagnostic network for brain tumor classification employing modulated Gabor filter banks. Vis Comput 37, 2157–2171 (2021). https://doi.org/10.1007/s00371-020-01977-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01977-4

Keywords

Navigation