Skip to main content
Log in

Four points: one-pass geometrical camera calibration algorithm

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Conventional geometrical camera calibration algorithms are usually based on running some iterative algorithms on test images obtained carefully from reference objects with precisely known pattern. Providing these test images and running the iterative algorithms are often time-consuming and sometimes costly. In addition, they are usually very sensitive to image distortions. To overcome these problems, an efficient and practical camera calibration method using a single rectangular reference object is proposed. The reference object can be as simple as an A4-size paper placed on a table. Using the coordinate of four corner points of reference image, generate eight equations. This paper first describes an analytical method to solve the equations and then provides a step-by-step algorithm. The proposed algorithm is evaluated using simulated images generated with both Autodesk 3ds Max software and Microsoft Camera Calibration data set. The results show that the accuracy of the proposed method is very close to the best ones available, while its sensitivity to distortion and computational load is the least. In addition, the required reference object is the simplest one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge Univ. Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Shi, J., Sun, Z., Bai, S.: 3D reconstruction framework via combining one 3D scanner and multiple stereo trackers. Vis. Comput. 34(3), 377–389 (2018)

    Article  Google Scholar 

  3. Lu, F., Zhou, B., Zhang, Y., et al.: Real-time 3D scene reconstruction with dynamically moving object using a single depth camera. Vis. Comput. 34(6–8), 753–763 (2018)

    Article  Google Scholar 

  4. El Hazzat, S., Merras, M., El Akkad, N., et al.: 3D reconstruction system based on incremental structure from motion using a camera with varying parameters. Vis. Comput. 34(10), 1443–1460 (2017)

    Google Scholar 

  5. Abdel-Aziz, Y.I., Karara, H.M., Hauck, M.: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. Photogramm. Eng. Remote Sens. 81(2), 103–107 (2015)

    Article  Google Scholar 

  6. Xu, G., et al.: Three degrees of freedom global calibration method for measurement systems with binocular vision. J. Opt. Soc. Korea 20(1), 107–117 (2016)

    Article  Google Scholar 

  7. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  8. Frosio, I., Turrini, C., Alzati, A.: Camera re-calibration after zooming based on sets of conics. Vis. Comput. 32(5), 663–674 (2016)

    Article  Google Scholar 

  9. Liu, M., et al.: Generic precise augmented reality guiding system and its calibration method based on 3d virtual model. Opt. Express 24(11), 12026–12042 (2016)

    Article  Google Scholar 

  10. Xu, G., Zhang, X., Su, J., Li, X., Zheng, A.: Solution approach of a laser plane based on Plücker matrices of the projective lines on a flexible 2D target. Appl. Optics 55(10), 2653–2656 (2016)

    Article  Google Scholar 

  11. Maybank, S.J., Faugeras, O.D.: A theory of self-calibration of a moving camera. Int. J. Comput. Vis. 8(2), 123–151 (1992)

    Article  Google Scholar 

  12. Triggs, B.: Auto calibration and the absolute quadric. In: Proc. IEEE Conf. Computer Vis. Pattern Recognit., pp. 609–614 (1997)

  13. Hemayed, E.E.: A survey of camera self-calibration. In: Proc. IEEE Conf. Adv. Video Signal Based Surveillance, pp. 351–357 (2003)

  14. Ackermann, H., Kanatani, K.: Robust and efficient 3-D reconstruction by self-calibration. In: Proc. IAPR Conf. Mach Vis. Applications, pp. 178–181 (2007)

  15. Zhang, Z.: Camera calibration with one-dimensional objects. IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 892–899 (2004)

    Article  Google Scholar 

  16. Hammarstedt, P., Sturm, P., Heyden, A.: Degenerate cases and closed-form solutions for camera calibration with one-dimensional objects. In: Proc. IEEE Int. Conf. Comput. Vis., vol. 1, pp. 317–324 (2005)

  17. Wu, F.C., Hu, Z.Y., Zhu, H.J.: Camera calibration with moving one-dimensional objects. Pattern Recognit. 38(5), 755–765 (2005)

    Article  Google Scholar 

  18. Qi, F., Li, Q., Luo, Y., Hu, D.: Constraints on general motions for camera calibration with one-dimensional objects. Pattern Recognit. 40(6), 1785–1792 (2007)

    Article  Google Scholar 

  19. Wang, L., Wu, F.C., Hu, Z.Y.: Multi-camera calibration with one-dimensional object under general motions. In: Proc. IEEE Int. Conf. Comput. Vis., pp. 1–7 (2007)

  20. de Francca, J.A., Stemmer, M.R., Francca, M.B.D.M., Alves, E.G.: Revisiting Zhang’s 1D calibration algorithm. Pattern Recognit. 43(3), 1180–1187 (2010)

    Article  Google Scholar 

  21. Wang, L., Duan, F., Liang, C.: A global optimal algorithm for camera calibration with one-dimensional objects. In: Proc. 14th Int. Conf. Human-Comput. Interact., pp. 660–669 (2011)

  22. Miyagawa, I., Arai, H., Koike, H.: Simple camera calibration from a single image using five points on two orthogonal 1-D objects. IEEE Trans. Image Process. 19(6), 1528–1538 (2010)

    Article  MathSciNet  Google Scholar 

  23. Shi, K., Dong, Q., Wu, F.: Weighted similarity-invariant linear algorithm for camera calibration with rotating 1-D objects. IEEE Trans. Image Process. 21(8), 3806–3812 (2012)

    Article  MathSciNet  Google Scholar 

  24. Zhao, Z., Liu, Y., Zhang, Z.: Camera calibration with three noncollinear points under special motions. IEEE Trans. Image Process. 17(12), 2393–2402 (2008)

    Article  MathSciNet  Google Scholar 

  25. Cao, X., Foroosh, H.: Camera calibration using symmetric objects. IEEE Trans. Image Process. 15(11), 3614–3619 (2006)

    Article  Google Scholar 

  26. Lv, F., Zhao, T., Nevatia, R.: Camera calibration from video of a walking human. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1513–1518 (2006)

    Article  Google Scholar 

  27. Caprile, B., Torre, V.: Using vanishing points for camera calibration. Int. J. Comput. Vis. 4(2), 127–139 (1990)

    Article  Google Scholar 

  28. Beardsley, P., Murray, D.: Camera calibration using vanishing points. In: Proc. Brit. Mach. Vis. Conf., pp 416–425 (1992)

  29. Cipolla, R., Drummond, T., Robertson, D.: Camera calibration from vanishing points in images of architectural scenes. In: Proc. Brit. Mach. Vis. Conf., vol. 2, pp 382–391 (1999)

  30. Grammatikopoulos, L., Karras, G., Petsa, E., Kalisperakis, I.: An automatic approach for camera calibration from vanishing points. ISPRS J. Photogramm. Remote Sens. 62(1), 64–76 (2007)

    Article  Google Scholar 

  31. Wang, G., Tsui, H.T., Hu, Z., Wu, F.: Camera calibration and 3-D reconstruction from a single view based on scene constraints. Image Vis. Comput. 23(3), 311–323 (2005)

    Article  Google Scholar 

  32. Babaguchi, N., Kawai, Y., Kitahashi, T.: Event based indexing of broadcasted sports video by intermodal collaboration. IEEE Trans. Multimed. 4(1), 68–75 (2002)

    Article  Google Scholar 

  33. Xu, C., Wang, J., Lu, H., Zhang, Y.: A novel framework for semantic annotation and personalized retrieval of sports video. IEEE Trans. Multimed. 10(3), 325–329 (2008)

    Google Scholar 

  34. Zhu, G., Xu, C., Huang, Q., Rui, Y., Jiang, S., Gao, W., Yao, H.: Event tactic analysis based on broadcast sports video. IEEE Trans. Multimed. 11(1), 49–67 (2009)

    Article  Google Scholar 

  35. Hu, M.-C., Chang, M.-H., Wu, J.-L., Chi, L.: Robust camera calibration and player tracking in broadcast basketball video. IEEE Trans. Multimed. 13(2), 266–279 (2011)

    Article  Google Scholar 

  36. Chen, H.-T., Tsai, W.-J., Lee, S.-Y., Yu, J.-Y.: Ball tracking and 3D trajectory approximation with applications to tactics analysis from single-camera volleyball sequences. Multimed. Tools Appl. 60(3), 641–667 (2012)

    Article  Google Scholar 

  37. Inamoto, N., Saito, H.: Free viewpoint video synthesis and presentation of sporting events for mixed reality entertainment. In: Proc. ACM SIGCHI Int. Conf. Adv. Comput. Entertainment Technol., pp 42–50 (2004)

  38. Chen, H.-T.: Geometry-based camera calibration using five-point correspondences from a single image. IEEE Trans. Circuits Syst. Video Technol. 27(12), 2555–2566 (2017)

    Article  Google Scholar 

  39. Avinash, N., Murali, S.: Perspective geometry based single image camera calibration. J. Math. Imaging Vis. 30(3), 221–230 (2007)

    Article  MathSciNet  Google Scholar 

  40. Lee, J.-H.: Camera calibration from a single image based on coupled line cameras and rectangle constraint. In: Int. Conf. on Pattern Recognit. (2012)

  41. Bajramovic, F., Denzler, J.: Global uncertainty-based selection of relative poses for multi camera calibration. In: Proc. Brit. Mach. Vis. Conf., vol. 2, pp. 382–391 (2008)

  42. Kang, S.B., Zhang, Z.:. A flexible new technique for camera calibration, Microsoft Camera Calibration data set. https://www.microsoft.com/en-us/research/project/a-flexible-new-technique-for-camera-calibration-2/. Accessed 1999

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Ardakani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 How to get a relationship from (13)–(16) to (17)–(35)

Summing Eqs. (13) and (14), we have:

$$\begin{aligned} &- 2T_{X} a + \left( {l_{2} - T_{Y} } \right)\left[ {2b + c\left( {\frac{{D_{21} }}{{D_{11} }} + \frac{{D_{22} }}{{D_{12} }}} \right)} \right] \\ & \quad - T_{Z} \left[ { - 2b\cot \left( {\theta_{x} } \right) + c{ \tan }\left( {\theta_{x} } \right)\left( {\frac{{D_{21} }}{{D_{11} }} + \frac{{D_{22} }}{{D_{12} }}} \right)} \right] = 0 \end{aligned}$$
(51)

Summing Eqs. (13) and (15), we have:

$$\begin{aligned} &- 2T_{X} a + l_{2} c\left( {\frac{{D_{21} }}{{D_{11} }} - \frac{{D_{23} }}{{D_{13} }}} \right) - T_{Y} \left[ {2b + c\left( {\frac{{D_{21} }}{{D_{11} }} + \frac{{D_{23} }}{{D_{13} }}} \right)} \right]\\ & \quad - T_{Z} \left[ { - 2b\cot \left( {\theta_{x} } \right) + c{ \tan }\left( {\theta_{x} } \right)\left( {\frac{{D_{21} }}{{D_{11} }} + \frac{{D_{23} }}{{D_{13} }}} \right)} \right] = 0 \end{aligned}$$
(52)

Summing Eqs. (13) and (16), we have:

$$\begin{aligned} &2\left( {l_{1} - T_{X} } \right)a + l_{2} c\left( {\frac{{D_{21} }}{{D_{11} }} - \frac{{D_{24} }}{{D_{14} }}} \right) \\ & \quad - T_{Y} \left[ {2b + c\left( {\frac{{D_{21} }}{{D_{11} }} + \frac{{D_{24} }}{{D_{14} }}} \right)} \right] \\ & \quad - T_{Z} \left[ { - 2b\cot \left( {\theta_{x} } \right) + c{ \tan }\left( {\theta_{x} } \right)\left( {\frac{{D_{21} }}{{D_{11} }} + \frac{{D_{24} }}{{D_{14} }}} \right)} \right] = 0 \end{aligned}$$
(53)

Summing Eqs. (14) and (15), we have:

$$\begin{aligned} &2\left( { - l_{1} - T_{X} } \right)a + l_{2} c\left( {\frac{{D_{22} }}{{D_{12} }} - \frac{{D_{23} }}{{D_{13} }}} \right) \\ & \quad - T_{Y} \left[ {2b + c\left( {\frac{{D_{22} }}{{D_{12} }} + \frac{{D_{23} }}{{D_{13} }}} \right)} \right] \\ & \quad - T_{Z} \left[ { - 2b\cot \left( {\theta_{x} } \right) + c{ \tan }\left( {\theta_{x} } \right)\left( {\frac{{D_{22} }}{{D_{12} }} + \frac{{D_{23} }}{{D_{13} }}} \right)} \right] = 0 \end{aligned}$$
(54)

Summing Eqs. (14) and (16), we have:

$$ \begin{aligned}&- 2T_{X} a + l_{2} c\left( {\frac{{D_{22} }}{{D_{12} }} - \frac{{D_{24} }}{{D_{14} }}} \right) - T_{Y} \left[ {2b + c\left( {\frac{{D_{22} }}{{D_{12} }} + \frac{{D_{24} }}{{D_{14} }}} \right)} \right] \\ & \quad - T_{Z} \left[ { - 2b\cot \left( {\theta_{x} } \right) + c{ \tan }\left( {\theta_{x} } \right)\left( {\frac{{D_{22} }}{{D_{12} }} + \frac{{D_{24} }}{{D_{14} }}} \right)} \right] = 0 \end{aligned}$$
(55)

Now subtracting Eq. (52) from (55) and keeping in mind that \( Q_{1} ,Q_{2} ,K_{1} ,K_{2} ,K_{4} ,K_{5} \) are defined as Eqs. (1720) and (2223), we reach Eq. (26). In the same way, Eq. (27) is obtained from subtracting Eq. (53) from (54).

Substituting Eqs. (22), (23), (26) and (27) in Eqs. (51) and (52), one can reach Eqs. (56) and (57), respectively.

$$ \begin{aligned}&- 2T_{X} a + l_{2} \left( {1 - K_{1} } \right)\left[ {2b + K_{2} a\left( {\frac{{D_{21} }}{{D_{11} }} + \frac{{D_{22} }}{{D_{12} }}} \right)} \right] \\ & \quad+ 2bT_{Z} \left[ {\cot \left( {\theta_{x} } \right) + {\text{tan}}\left( {\theta_{x} } \right)} \right] = 0 \end{aligned}$$
(56)
$$\begin{aligned} &- 2T_{X} a + l_{2} K_{2} a\left( {\frac{{D_{22} }}{{D_{12} }} - \frac{{D_{24} }}{{D_{14} }}} \right)\\ & \quad - l_{2} K_{1} \left[ {2b + K_{2} a\left( {\frac{{D_{22} }}{{D_{12} }} + \frac{{D_{24} }}{{D_{14} }}} \right)} \right] \\ & \quad + 2bT_{Z} \left[ {\cot \left( {\theta_{x} } \right) + {\text{tan}}\left( {\theta_{x} } \right)} \right] = 0 \end{aligned}$$
(57)

Again subtracting Eq. (56) from (57) and keeping in mind that \( K_{3} \) is defined as Eq. (21), we reach Eq. (28). Finally with the assumption that \( K_{6 ,} K_{7} \) as defined in Eqs. (24, 25), substituting Eq. (28) in Eq. (57) one can reach Eq. (29).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardakani, H.K., Mousavinia, A. & Safaei, F. Four points: one-pass geometrical camera calibration algorithm. Vis Comput 36, 413–424 (2020). https://doi.org/10.1007/s00371-019-01632-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01632-7

Keywords

Navigation