Skip to main content

Advertisement

Log in

Motion energy image for evaluation of video stabilization

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Large volumes of video content have been generated through the development of compact and portable cameras. Examples of applications that have been benefited from such growth of multimedia data include business conferencing, telemedicine, surveillance and security, entertainment, distance learning and robotics. Video stabilization is the process of detecting and removing undesired motion or instabilities from a video stream caused during the acquisition stage when handling the camera. In this work, we introduce and analyze a novel visual representation based on motion energy image for qualitative evaluation of video stabilization approaches. Experiments conducted on different video sequences are performed to demonstrate the effectiveness of the visual representation as qualitative measure for evaluating video stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Extracted from [37]

Fig. 3
Fig. 4

Extracted from [33]

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Ahad, M.A.R.: Motion History Images for Action Recognition and Understanding. Springer, Berlin (2012)

    MATH  Google Scholar 

  2. Amanatiadis, A.A., Andreadis, I.: Digital image stabilization by independent component analysis. IEEE Trans. Instrum. Meas. 59(7), 1755–1763 (2010)

    Article  Google Scholar 

  3. Battiato, S., Gallo, G., Puglisi, G., Scellato, S.: SIFT features tracking for video stabilization. In: 14th International Conference on Image Analysis and Processing, pp. 825–830. IEEE (2007)

  4. Borgo, R., Chen, M., Daubney, B., Grundy, E., Heidemann, G., Höferlin, B., Höferlin, M., Leitte, H., Weiskopf, D., Xie, X.: State of the art report on video-based graphics and video visualization. Comput. Graph. Forum 31, 2450–2477 (2012)

    Article  Google Scholar 

  5. Chang, H.C., Lai, S.H., Lu, K.R.: A robust and efficient video stabilization algorithm. IEEE Int. Conf. Multimed. Expo IEEE 1, 29–32 (2004)

    Google Scholar 

  6. Chang, J.Y., Hu, W.F., Cheng, M.H., Chang, B.S.: Digital image translational and rotational motion stabilization using optical flow technique. IEEE Trans. Consum. Electron. 48(1), 108–115 (2002)

    Article  Google Scholar 

  7. Chen, B., Zhao, J., Wang, Y.: Research on evaluation method of video stabilization. In: International Conference on Advanced Material Science and Environmental Engineering, pp. 253–258 (2016)

  8. Chen, B.H., Kopylov, A., Huang, S.C., Seredin, O., Karpov, R., Kuo, S.Y., Lai, K.R., Tan, T.H., Gochoo, M., Bayanduuren, D.: Improved global motion estimation via motion vector clustering for video stabilization. Eng. Appl. Artif. Intell. 54, 39–48 (2016)

    Article  Google Scholar 

  9. Chen, B.Y., Lee, K.Y., Huang, W.T., Lin, J.S.: Capturing intention-based full-frame video stabilization. Comput. Graph. Forum 27, 1805–1814 (2008)

    Article  Google Scholar 

  10. Choi, S., Kim, T., Yu, W.: Robust video stabilization to outlier motion using adaptive RANSAC. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1897–1902. IEEE (2009)

  11. Cirne, M.V.M., Pedrini, H.: A video summarization method based on spectral clustering. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 479–486. Springer, Berlin (2013)

    Chapter  Google Scholar 

  12. Cirne, M.V.M., Pedrini, H.: Summarization of videos by image quality assessment. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 901–908. Springer, Berlin (2014)

  13. Ertürk, S.: Real-time digital image stabilization using Kalman filters. Real Time Imaging 8(4), 317–328 (2002)

    Article  MATH  Google Scholar 

  14. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  15. Grundmann, M., Kwatra, V., Essa, I.: Auto-directed video stabilization with robust L1 optimal camera paths. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 225–232 (2011)

  16. Huang, T.S.: Image Sequence Analysis, vol. 5. Springer, Berlin (2013)

    Google Scholar 

  17. Jia, R., Zhang, H., Wang, L., Li, J.: Digital image stabilization based on phase correlation. Int. Conf. Artif. Intell. Comput. Intell. IEEE 3, 485–489 (2009)

    Google Scholar 

  18. Joshi, N., Kienzle, W., Toelle, M., Uyttendaele, M., Cohen, M.F.: Real-time hyperlapse creation via optimal frame selection. ACM Trans. Graph. 34(4), 63 (2015)

    Article  Google Scholar 

  19. Ko, S.J., Lee, S.H., Lee, K.H.: Digital image stabilizing algorithms based on bit-plane matching. IEEE Trans. Consum. Electron. 44(3), 617–622 (1998)

    Article  Google Scholar 

  20. Kumar, S., Azartash, H., Biswas, M., Nguyen, T.: Real-time affine global motion estimation using phase correlation and its application for digital image stabilization. IEEE Trans. Image Process. 20(12), 3406–3418 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, C.T., Hong, C.T., Yang, C.T.: Real-time digital image stabilization system using modified proportional integrated controller. IEEE Trans. Circuits Syst. Video Technol. 19(3), 427–431 (2009)

    Article  Google Scholar 

  22. Litvin, A., Konrad, J., Karl, W.C.: Probabilistic video stabilization using Kalman filtering and mosaicing. In: Electronic Imaging, International Society for Optics and Photonics, pp. 663–674 (2003)

  23. Liu, S., Yuan, L., Tan, P., Sun, J.: Bundled camera paths for video stabilization. ACM Trans. Graph. 32(4), 78 (2013)

    Google Scholar 

  24. Lowe, D.G.: Object recognition from local scale-invariant features. Seventh IEEE Int. Conf. Comput. Vis. IEEE 2, 1150–1157 (1999)

    Article  Google Scholar 

  25. Marcenaro, L., Vernazza, G., Regazzoni, C.S.: Image stabilization algorithms for video-surveillance applications. Int. Conf. Image Process. IEEE 1, 349–352 (2001)

    Google Scholar 

  26. Matsushita, Y., Ofek, E., Ge, W., Tang, X., Shum, H.Y.: Full-frame video stabilization with motion inpainting. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1150–1163 (2006)

    Article  Google Scholar 

  27. Morimoto, C., Chellappa, R.: Fast electronic digital image stabilization. In: 13th International Conference on Pattern Recognition, vol. 3, pp. 284–288. IEEE (1996)

  28. Niskanen, M., Silvén, O., Tico, M.: Video stabilization performance assessment. In: IEEE International Conference on Multimedia and Expo, pp. 405–408. IEEE (2006)

  29. Puglisi, G., Battiato, S.: A robust image alignment algorithm for video stabilization purposes. IEEE Trans. Circuits Syst. Video Technol. 21(10), 1390–1400 (2011)

    Article  Google Scholar 

  30. Qu, H., Song, L., Xue, G.: Shaking video synthesis for video stabilization performance assessment. In: Visual Communications and Image Processing, pp. 1– 6. IEEE (2013)

  31. Ratakonda, K.: Real-time digital video stabilization for multi-media applications. IEEE Int. Symp. Circuits Syst. IEEE 4, 69–72 (1998)

    Google Scholar 

  32. Ryu, Y.G., Chung, M.J.: Robust online digital image stabilization based on point-feature trajectory without accumulative global motion estimation. IEEE Signal Process. Lett. 19(4), 223–226 (2012)

    Article  Google Scholar 

  33. Schoeffmann, K., Lux, M., Taschwer, M., Boeszoermenyi, L.: Visualization of video motion in context of video browsing. In: IEEE International Conference on Multimedia and Expo, pp. 658–661. IEEE (2009)

  34. Shen, Y., Guturu, P., Damarla, T., Buckles, B.P., Namuduri, K.R.: Video stabilization using principal component analysis and scale invariant feature transform in particle filter framework. IEEE Trans. Consum. Electron. 55(3), 1714–1721 (2009)

    Article  Google Scholar 

  35. Shukla, D., Jha, R.K.: A robust video stabilization technique using integral frame projection warping. Signal Image Video Process. 9(6), 1287–1297 (2015)

    Article  Google Scholar 

  36. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  37. Yang, J., Schonfeld, D., Mohamed, M.: Robust video stabilization based on particle filter tracking of projected camera motion. IEEE Trans. Circuits Syst. Video Technol. 19(7), 945–954 (2009)

    Article  Google Scholar 

  38. Zheng, Q., Yang, M.: A video stabilization method based on inter-frame image matching score. Glob. J. Comput. Sci. Technol. 17(1), 1–6 (2017)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to São Paulo Research Foundation (FAPESP Grants #2017/12646-3 and #2014/12236-1) and National Council for Scientific and Technological Development (CNPq Grant #305169/2015-7) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helio Pedrini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberto e Souza, M., Pedrini, H. Motion energy image for evaluation of video stabilization. Vis Comput 35, 1769–1781 (2019). https://doi.org/10.1007/s00371-018-1572-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1572-0

Keywords

Navigation